• Login / Register
    Search 
    •   Home
    • Faculty of Science and Engineering
    • Search
    •   Home
    • Faculty of Science and Engineering
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CommunityTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    Filter by Category

    Subjects
    atmospheric chemistry (1)
    criegee intermediates (1)
    laser induced fluorescence (1)View MoreAuthors
    Elste, Thomas (1)
    Harder, Hartwig (1)Hens, Korbinian (1)
    Kubistin, Dagmar (1)
    Lelieveld, Jos (1)
    Martinez, Monica (1)Noelscher, Anke C. (1)
    Novelli, Anna (1)
    Paasonen, Pauli (1)Petaja, Tuukka (1)View MoreTypesPresentation (1)

    About

    AboutUniversity of Chester

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Identifying Criegee intermediates as potential oxidants in the troposphere

    Novelli, Anna; Hens, Korbinian; Tatum-Ernest, Cheryl; Martinez, Monica; Noelscher, Anke C.; Sinha, Vinayak; Paasonen, Pauli; Petaja, Tuukka; Sipila, Mikko; Elste, Thomas; et al. (American Geophysical Union, 2015-10)
    Criegee intermediates (CI) are formed during the ozonolysis of unsaturated compounds and have been intensively studied in the last few years due to their possible role as oxidants in the troposphere. Stabilised CI (SCI) are now known to react very rapidly, k(298 K) = 10-12 to 10-10 cm3 molecule-1 s-1, with a large number of trace gases (SO2, NO2, organic acids, water dimers). Still, it remains challenging to assess their effective oxidative capacity, as CI chemistry is complex, spans a large range of rate coefficients for different SCI conformers reacting with water dimers and trace gases, and in addition no reliable measurement technique able to detect ambient SCI concentrations is currently available. In this study, we examine the extensive dataset from the HUMPPA-COPEC 2010 and the HOPE 2012 field campaigns, aided by literature data, to estimate the abundance of SCI in the lower troposphere. The budget of SCI is analyzed using four different approaches: 1) based on an observed yet unexplained H2SO4 production; 2) from the measured concentrations of unsaturated volatile organic compounds (VOC); 3) from OH reactivity measurements; 4) from the unexplained production rate of OH. A SCI concentration range between 5 x 103 and 2 x 106 molecule cm-3 is calculated for the two environments. The central weighted estimate of the SCI concentration over the boreal forest of ~ 5 x 104 molecules cm-3 implies a significant impact on the conversion of SO2 into H2SO4. In addition, we present measurements obtained using our inlet pre-injector laser-induced fluorescence assay by gas expansion technique (IPI-LIF-FAGE) for the above-mentioned campaigns. A recent laboratory study performed with the same instrumental setup showed that the IPI-LIF-FAGE system is sensitive to the detection of the OH formed from unimolecular decomposition of SCI. Building on these measurements, the background OH (OHbg) measured during the two field campaigns is investigated in comparison with many other trace gases to assess if the observations in controlled conditions are transferable to ambient conditions.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.