## Search

Now showing items 1-10 of 32

JavaScript is disabled for your browser. Some features of this site may not work without it.

All of ChesterRepCommunitiesTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournalThis CommunityTitleAuthorsPublication DateSubmit DateSubjectsPublisherJournal

SubjectsError estimates (9)error estimates (6)Caputo fractional derivative (4)Finite difference method (4)finite element method (3)Laplace transform (3)numerical schemes (3)stability (3)Caputo derivative (2)discrete equations (2)View MoreJournalJournal of Computational and Applied Mathematics (4)Computational Methods in Applied Mathematics (3)Applied Numerical Mathematics (2)Fractional Calculus and Applied Analysis (2)Journal of Computational Physics (2)View MoreAuthors

Yan, Yubin (32)

Ford, Neville J. (11)Khan, Monzorul (4)Liang, Zongqi (4)Liu, Fang (4)Pal, Kamal (4)Li, Zhiqiang (3)Xiao, Jingyu (3)Liu, Yanmei (2)Malique, Md A. (2)View MoreTypesArticle (29)Book chapter (2)Meetings and Proceedings (1)

Now showing items 1-10 of 32

- List view
- Grid view
- Sort Options:
- Relevance
- Title Asc
- Title Desc
- Issue Date Asc
- Issue Date Desc
- Results Per Page:
- 5
- 10
- 20
- 40
- 60
- 80
- 100

An algorithm for the numerical solution of two-sided space-fractional partial differential equations.

Ford, Neville J.; Pal, Kamal; Yan, Yubin (de Gruyter, 2015-08-20)

We introduce an algorithm for solving two-sided space-fractional partial differential equations. The space-fractional derivatives we consider here are left-handed and right-handed Riemann–Liouville fractional derivatives which are expressed by using Hadamard finite-part integrals. We approximate the Hadamard finite-part integrals by using piecewise quadratic interpolation polynomials and obtain a numerical approximation of the space-fractional derivative with convergence order

Higher order numerical methods for solving fractional differential equations

Yan, Yubin; Pal, Kamal; Ford, Neville J. (Springer, 2013-10-05)

In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 < α < 1. The order of convergence of the numerical method is O(h^(3−α)). Our second approach is based on discretisation of the integral form of the fractional differential equation and we obtain a fractional Adams-type method for a nonlinear fractional differential equation of any order α >0. The order of convergence of the numerical method is O(h^3) for α ≥ 1 and O(h^(1+2α)) for 0 < α ≤ 1 for sufficiently smooth solutions. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation

Du, Ruilian; Yan, Yubin; Liang, Zongqi (Elsevier, 2018-10-05)

A new high-order finite difference scheme to approximate the Caputo fractional derivative $\frac{1}{2} \big ( \, _{0}^{C}D^{\alpha}_{t}f(t_{k})+ \, _{0}^{C}D^{\alpha}_{t}f(t_{k-1}) \big ), k=1, 2, \dots, N, $ with the convergence order $O(\Delta t^{4-\alpha}), \, \alpha\in(1,2)$ is obtained when $f^{\prime \prime \prime} (t_{0})=0$, where $\Delta t$ denotes the time step size. Based on this scheme we introduce a finite difference method for solving fractional diffusion wave equation with the convergence order $O(\Delta t^{4-\alpha} + h^2)$, where $h$ denotes the space step size. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

A Dufort-Frankel Difference Scheme for Two-Dimensional Sine-Gordon Equation

Liang, Zongqi; Yan, Yubin; Cai, Guorong (Hindawi Publishing Corporation, 2014-10)

A standard Crank-Nicolson finite-difference scheme and a Dufort-Frankel finite-difference scheme are introduced to solve two-dimensional damped and undamped sine-Gordon equations. The stability and convergence of the numerical methods are considered. To avoid solving the nonlinear system, the predictor-corrector techniques are applied in the numerical methods. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

Existence of time periodic solutions for a class of non-resonant discrete wave equations

Zhang, Guang; Feng, Wenying; Yan, Yubin (Springer, 2015-04-17)

In this paper, a class of discrete wave equations with Dirichlet boundary conditions are obtained by using the center-difference method. For any positive integers m and T, when the existence of time mT-periodic solutions is considered, a strongly indefinite discrete system needs to be established. By using a variant generalized weak linking theorem, a non-resonant superlinear (or superquadratic) result is obtained and the Ambrosetti-Rabinowitz condition is improved. Such a method cannot be used for the corresponding continuous wave equations or the continuous Hamiltonian systems; however, it is valid for some general discrete Hamiltonian systems.

Analytical and numerical treatment of oscillatory mixed differential equations with differentiable delays and advances

Ferreira, José M.; Ford, Neville J.; Malique, Md A.; Pinelas, Sandra; Yan, Yubin (Elsevier, 2011-04-12)

This article discusses the oscillatory behaviour of the differential equation of mixed type.

Numerical treatment of oscillary functional differential equations

Ford, Neville J.; Yan, Yubin; Malique, Md A. (Elsevier, 2010-09)

This preprint is concerned with oscillatory functional differential equations (that is, those equations where all the solutions oscillate) under a numerical approximation. Our interest is in the preservation of qualitative properties of solutions under a numerical discretisation. We give conditions under which an equation is oscillatory, and consider whether the discrete schemes derived using linear v-methods will also be oscillatory. We conclude with some general theory

Finite Difference Method for Two-Sided Space-Fractional Partial Differential Equations

Pal, Kamal; Liu, Fang; Yan, Yubin; Roberts, Graham (Springer International Publishing, 2015-06)

Finite difference methods for solving two-sided space-fractional partial differential equations are studied. The space-fractional derivatives are the left-handed and right-handed Riemann-Liouville fractional derivatives which are expressed by using Hadamard finite-part integrals. The Hadamard finite-part integrals are approximated by using piecewise quadratic interpolation polynomials and a numerical approximation scheme of the space-fractional derivative with convergence order O(Δx^(3−α )),10 , where Δt,Δx denote the time and space step sizes, respectively. Numerical examples are presented and compared with the exact analytical solution for its order of convergence.

Numerical Solutions of Fractional Differential Equations by Extrapolation

Pal, Kamal; Liu, Fang; Yan, Yubin (Springer International Publishing, 2015-06)

An extrapolation algorithm is considered for solving linear fractional differential equations in this paper, which is based on the direct discretization of the fractional differential operator. Numerical results show that the approximate solutions of this numerical method has the expected asymptotic expansions.

Optimal convergence rates for semidiscrete finite element approximations of linear space-fractional partial differential equations under minimal regularity assumptions

Liu, Fang; Liang, Zongqi; Yan, Yubin (Elsevier, 2018-12-17)

We consider the optimal convergence rates of the semidiscrete finite element approximations for solving linear space-fractional partial differential equations by using the regularity results for the fractional elliptic problems obtained recently by Jin et al. \cite{jinlazpasrun} and Ervin et al. \cite{ervheuroo}. The error estimates are proved by using two approaches. One approach is to apply the duality argument in Johnson \cite{joh} for the heat equation to consider the error estimates for the linear space-fractional partial differential equations. This argument allows us to obtain the optimal convergence rates under the minimal regularity assumptions for the solution. Another approach is to use the approximate solution operators of the corresponding fractional elliptic problems. This argument can be extended to consider more general linear space-fractional partial differential equations. Numerical examples are given to show that the numerical results are consistent with the theoretical results.

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.