• Characterization of microwave and terahertz dielectric properties of single crystal La2Ti2O7 along one single direction

      Zhang, Man; Tang, Zhiyong; Zhang, Hangfeng; Smith, Graham; Jiang, Qinghui; Saunders, Theo; Yang, Bin; Yan, Haixue; Huazhong University of Science and Technology; University of Chester; Queen Mary University of London; Chinese Academy of Sciences (Elsevier, 2021-08-02)
      New generation wireless communication systems require characterisations of dielectric permittivity and loss tangent at microwave and terahertz bands. La2Ti2O7 is a candidate material for microwave application. However, all the reported microwave dielectric data are average value from different directions of a single crystal, which could not reflect its anisotropic nature due to the layered crystal structure. Its dielectric properties at the microwave and terahertz bands in a single crystallographic direction have rarely been reported. In this work, a single crystal ferroelectric La2Ti2O7 was prepared by floating zone method and its dielectric properties were characterized from 1 kHz to 1 THz along one single direction. The decrease in dielectric permittivity with increasing frequency is related to dielectric relaxation from radio frequency to microwave then to terahertz band. The capability of characterizing anisotropic dielectric properties of a single crystal in this work opens the feasibility for its microwave and terahertz applications.
    • Chemical and device degradation in PCPDTBT: PCBM solar cells using XPS and ToF-SIMS

      Kettle, Jeff; Waters, Huw; Ding, Ziqian; Smith, Graham C.; Bangor University ; Bangor University ; Bangor University ; University of Chester (2015-04-20)
      Analysis of the degradation routes for PCPDTBT-based solar cells under illumination and in the presence of air have been conducted using a combination of X-ray Photoelectron Spectroscopy (XPS), Time-Of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and solar cell device data. After ageing, XPS studies show that PCPDTBT appears as an oxygen-containing polymer, with data indicating that a break-up in the aromatic rings, formation of sulphates at the thiophene ring, chain scission in the polymer backbone and also loss of side chains. XPS studies on active layers blends of PCPDTBT and PCBM also show significant changes in the vertical composition during ageing, with increased enrichment of PCPDTBT observed at the top surface and that the use of a processing additive (ODT) has a negative impact on the morphological stability. TOF-SIMS has been used to study electrode degradation during ageing experiments leads to migration of indium and tin ions into the active layer in non-inverted devices, but is eliminated for inverted devices.
    • Chemical changes in PCPDTBT:PCBM solar cells using XPS and TOF-SIMS and use of inverted device structure for improving lifetime performance

      Kettle, Jeff; Waters, Huw; Ding, Ziqian; Horie, Masaki; Smith, Graham C.; School of Electronic Engineering University of Bangor (Kettle, Waters, Ding), Department of Chemical Engineering National Tsing Hua University Taiwan (Horie), Department of Natural Sciences University of Chester (Smith) (Elsevier, 2015-06-10)
      Analysis of the degradation routes for poly[(4,4-bis(2-ethylhexyl)-cyclopenta-[2,1-b;3,4-b′]dithiophene)-2,6-diyl-alt-2,1,3-benzothiadiazole-4,7-diyl] (PCPDTBT)-based solar cells under illumination and in the presence of air have been conducted using a combination of X-ray Photoelectron Spectroscopy (XPS), Time-Of-Flight Secondary Ion Mass Spectrometry (TOF-SIMs) and solar cell device data. After ageing, XPS studies show that PCPDTBT appears as an oxygen-containing polymer, with data indicating that a break-up in the aromatic rings, formation of sulphates at the thiophene ring, chain scission in the polymer backbone and also loss of side chains. XPS studies have also been conducted on Phenyl-C71-butyric acid methyl ester (PC71BM) films and show a breakage of the fullerene cage, loss of molecular shape and oxidation of carbon atoms in the fullerene cage and side chains after ageing. XPS studies on active layers blends of PCPDTBT and PCBM also show significant changes in the vertical composition during ageing, with increased enrichment of PCPDTBT observed at the top surface and that the use of a processing additive (ODT) has a negative impact on the morphological stability. Based on these studies, it shown that inverted structures are better suited than non-inverted devices for PCPDTBT:PCBM solar cells. An additional advantage of inverted devices is shown using TOF-SIMS; electrode degradation during ageing experiments leads to migration of indium and tin ions into the active layer in non-inverted devices, but is eliminated for inverted devices.
    • Chemical ionization quadrupole mass spectrometer with an electrical discharge ion source for atmospheric trace gas measurement

      Eger, Philipp G.; Helleis, Frank; Schuster, Gerhard; Phillips, Gavin J.; Lelieveld, Jos; Crowley, John N.; Max Planck Institute for Chemistry; University of Chester (Copernicus Publications, 2019-03-26)
      We present a chemical ionization quadrupole mass spectrometer (CI-QMS) with a radio-frequency (RF) discharge ion source through N2∕CH3I as a source of primary ions. In addition to the expected detection of PAN, peracetic acid (PAA) and ClNO2 through well-established ion–molecule reactions with I− and its water cluster, the instrument is also sensitive to SO2, HCl and acetic acid (CH3C(O)OH) through additional ion chemistry unique to our ion source. We present ionization schemes for detection of SO2, HCl and acetic acid along with illustrative datasets from three different field campaigns underlining the potential of the CI-QMS with an RF discharge ion source as an alternative to 210Po. The additional sensitivity to SO2 and HCl makes the CI-QMS suitable for investigating the role of sulfur and chlorine chemistry in the polluted marine and coastal boundary layer.
    • Cholesterol Homeostasis: An In Silico Investigation into How Aging Disrupts Its Key Hepatic Regulatory Mechanisms

      Morgan, Amy; Mc Auley, Mark; University of Chester
      The dysregulation of intracellular cholesterol homeostasis is associated with several age-related diseases, most notably cardiovascular disease (CVD). Research in this area has benefitted from using computational modelling to study the inherent complexity associated with the regulation of this system. In addition to facilitating hypothesis exploration, the utility of modelling lies in its ability to represent an array of rate limiting enzymatic reactions, together with multiple feedback loops, which collectively define the dynamics of cholesterol homeostasis. However, to date no model has specifically investigated the effects aging has on this system. This work addresses this shortcoming by explicitly focusing on the impact of aging on hepatic intracellular cholesterol homeostasis. The model was used to investigate the experimental findings that reactive oxygen species induce the total activation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR). Moreover, the model explored the impact of an age-related decrease in hepatic acetyl-CoA acetyltransferase 2 (ACAT2). The model suggested that an increase in the activity of HMGCR does not have as significant an impact on cholesterol homeostasis as a decrease in hepatic ACAT2 activity. According to the model, a decrease in the activity of hepatic ACAT2 raises free cholesterol (FC) and decreases low-density lipoprotein cholesterol (LDL-C) levels. Increased acetyl CoA synthesis resulted in a reduction in the number of hepatic low-density lipoprotein receptors, and increased LDL-C, FC, and cholesterol esters. The rise in LDL-C was restricted by elevated hepatic FC accumulation. Taken together these findings have important implications for healthspan. This is because emerging clinical data suggest hepatic FC accumulation is relevant to the pathogenesis of non-alcoholic fatty liver disease (NAFLD), which is associated with an increased risk of CVD. These pathophysiological changes could, in part, help to explain the phenomenon of increased mortality associated with low levels of LDL-C which have been observed in certain studies involving the oldest old (≥ 85 years).
    • Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation

      Morgan, Amy; Mooney, Kathleen M.; Wilkinson, Stephen J.; Pickles, Neil; Mc Auley, Mark T.; University of Chester, Edgehill University (Elsevier, 2016-04-01)
      Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions.
    • ClNO2 and nitrate formation via N2O5 uptake to particles: Derivation of N2O5 uptake coefficients from ambient datasets

      Phillips, Gavin J.; Thieser, Jim; Tang, Mingjin; Sobanski, Nicolas; Fachinger, Johannes; Drewnick, Frank; Lelieveld, Jos; Crowley, John N.; Max Planck Institute for Chemistry; University of Chester (Copernicus Publications, 2015-02-25)
      We present estimates of the uptake coefficient of N2O5 using ambient measurements of the trace gases N2O5 and ClNO2 and particle composition and surface area at the Kleiner Feldberg observatory, near Frankfurt, SW Germany, during the PARADE campaign (summer 2011). Three methods used to extract gamma(N2O5) from the datasets were found to be in reasonable agreement, generating values between 0.001 and 0.4. Gamma (N2O5) displayed a significant dependence on relative humidity (RH), the largest values obtained, as expected, at high RH. No significant dependence of gamma(N2O5) on particle organic content or sulphate-to-organic ratio was observed. The variability in gamma(N2O5) is however large, indicating that humidity is not the sole factor determining the uptake coefficient. There is also an indication that the yield of ClNO2 with respect to N2O5 uptake is larger with lower concentrations of PM1 total organics. Our results will be compared to existing uptake coefficients from laboratory studies and those derived from field observations.
    • Colour Coded Emotion Classification in Mental Health Social Media

      Vaughan, Neil; Mulvenna, Maurice; Bond, Raymond; Royal Academy of Engineering; University of Chester (BCS, The Chartered Institute for IT, ACM Proceedings, 2018-07-06)
      This research applies emotion detection to messages from online mental health social media. In particular, this focusses on specialised social media for users to report health or mental health problems. Automatically detecting the emotion in social media can help to rapidly identify any concerning problems which could benefit from intervention aiming to prevent self-harming or suicide. Detecting emotions enables messages to be colour coordinated according to the emotion to enhance the human-computer interaction. A supervised classification method is applied to a labelled dataset and results presented. A prototype user interface system is developed based on detecting emotion, colour coding the message to display detected emotions to users in real-time.
    • Columnar self-assembly, electrochemical and luminescence properties of basket-shaped liquid crystalline derivatives of Schiff-base-moulded p-tert-butyl-calix[4]arene

      Sharma, Vinay S.; orcid: 0000-0003-4970-0676; Sharma, Anuj S.; Worthington, Sheena J. B.; Shah, Priyanka A.; orcid: 0000-0002-1386-6984; Shrivastav, Pranav S.; orcid: 0000-0002-1284-1558 (Royal Society of Chemistry (RSC), 2020)
      A new family of blue-light emitting supramolecular basket-shaped liquid crystalline compounds based on p-tert-butyl-calix[4]arene core to form self-assembly and columnar hexagonal phase.
    • Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact

      Yang, Yang; Brammer, John G.; Wright, Daniel G.; Scott, Jim; Serrano, Clara; Bridgwater, Tony; Aston University; University of Chester (Elsevier, 2017-02-10)
      Combined heat and power from the intermediate pyrolysis of biomass materials offers flexible, on demand renewable energy with some significant advantages over other renewable routes. To maximize the deployment of this technology an understanding of the dynamics and sensitivities of such a system is required. In the present work the system performance, economics and life-cycle environmental impact is analysed with the aid of the process simulation software Aspen Plus. Under the base conditions for the UK, such schemes are not currently economically competitive with energy and char products produced from conventional means. However, under certain scenarios as modelled using a sensitivity analysis this technology can compete and can therefore potentially contribute to the energy and resource sustainability of the economy, particularly in on-site applications with low-value waste feedstocks. The major areas for potential performance improvement are in reactor cost reductions, the reliable use of waste feedstocks and a high value end use for the char by-product from pyrolysis.
    • Combining Kronecker product approximation with discrete wavelet transforms to solve dense, function-related linear systems

      Ford, Judith M.; Tyrtyshnikov, Eugene E.; Chester College of Higher Education ; Russian Academy of Sciences (Society for Industrial and Applied Mathematics, 2003-11)
    • Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine

      Hossain, Abul K.; Serrano, Clara; Brammer, John G.; Omran, Abdelnasir; Ahmed, F.; Smith, David I.; Davies, Philip A.; Aston University (Elsevier, 2015-12-23)
      Digestate from the anaerobic digestion conversion process is widely used as a farm land fertiliser. This study proposes an alternative use as a source of energy. Dried digestate was pyrolysed and the resulting oil was blended with waste cooking oil and butanol (10, 20 and 30 vol.%). The physical and chemical properties of the pyrolysis oil blends were measured and compared with pure fossil diesel and waste cooking oil. The blends were tested in a multi-cylinder indirect injection compression ignition engine. Engine combustion, exhaust gas emissions and performance parameters were measured and compared with pure fossil diesel operation. The ASTM copper corrosion values for 20% and 30% pyrolysis blends were 2c, compared to 1b for fossil diesel. The kinematic viscosities of the blends at 40 C were 5–7 times higher than that of fossil diesel. Digested pyrolysis oil blends produced lower in-cylinder peak pressures than fossil diesel and waste cooking oil operation. The maximum heat release rates of the blends were approximately 8% higher than with fossil diesel. The ignition delay periods of the blends were higher; pyrolysis oil blends started to combust late and once combustion started burnt quicker than fossil diesel. The total burning duration of the 20% and 30% blends were decreased by 12% and 3% compared to fossil diesel. At full engine load, the brake thermal efficiencies of the blends were decreased by about 3–7% when compared to fossil diesel. The pyrolysis blends gave lower smoke levels; at full engine load, smoke level of the 20% blend was 44% lower than fossil diesel. In comparison to fossil diesel and at full load, the brake specific fuel consumption (wt.) of the 30% and 20% blends were approximately 32% and 15% higher. At full engine load, the CO emission of the 20% and 30% blends were decreased by 39% and 66% with respect to the fossil diesel. Blends CO2 emissions were similar to that of fossil diesel; at full engine load, 30% blend produced approximately 5% higher CO2 emission than fossil diesel. The study concludes that on the basis of short term engine experiment up to 30% blend of pyrolysis oil from digestate of arable crops can be used in a compression ignition engine.
    • Comment on “Observations of ammonia, nitric acid, and fine particles in a rural gas production region” by Yi Li, Florian M. Schwandnera, H. James Sewell, Angela Zivkovich, Mark Tigges, Suresh Raja, Stephen Holcomb, John V. Molenar, Lincoln Sherman, Cassie Archuleta, Taehyoung Lee and Jeffrey L. Collett Jr. Atmospheric Environment (in press)

      Phillips, Gavin J.; University of Chester (Elsevier, 2014-03)
      Peer reviewed commentary on a research paper. An artefact of the detection of nitric acid (HNO3) by denuder methods is discussed. This artefact arises from the likely reaction of dinitrogen pentoxide (N2O5) on the denuder train resulting in the report of some fraction of N2O5 as HNO3.
    • Comparative Performance Modelling of Heat Pump based Heating Systems using Dynamic Carbon Intensity

      Counsell, John M.; Khalid, Yousaf; Stewart, Matt; University of Chester (IET, 2018-11-31)
      Modern buildings and homes utilise multiple systems for energy generation, supply and storage in order to maintain occupant comfort, reduce operating costs and CO2 emissions. In recent times electricity generation and supply network (UK National Grid) have had to manage variable supply from renewable sources such as wind turbines and photovoltaics. This resulting supply mixture has a dynamic profile at intermittent times. To manage excess supply, the options are either to reduce the generation by power stations/renewables or reinforce the power infrastructure with storage capability. This has given rise to calls for electrification of services in streamlining the supply profile through intelligent demand response such as electric heating and vehicles. Furthermore, due to zero carbon energy sources with dynamic supply profile, the carbon intensity is no longer constant. This impacts the seasonal CO2 emissions calculations and also the design and performance of electrical powered heat pump based heating systems. The RISE (Renewable Integrated Sustainable Electric) heating system was developed (funded by the UK Research and Innovation), where an electrical powered Heat pump is combined with electric thermal storage allowing low cost and low carbon electricity to be utilised. For such a system more realistic performance analysis requires dynamic carbon intensity calculations to assess impact on its ability to maintain comfort, low operating costs and low carbon emissions. The paper builds upon previously published research on the RISE system comparing with domestic Gas Condensing Boiler (GCB) using static carbon calculations. This paper presents a comparison between the RISE system and standard domestic electrical powered Air Source Heat Pump (ASHP) when using static and dynamic carbon intensity profiles. The Inverse Dynamics based Energy Assessment and Simulation (IDEAS) framework is utilised for modelling and dynamic simulation of building and heating system, operating cost and estimation of annual emissions based on half hourly (HH) dynamic CO2 intensity figures rather than annual average. The results show that with dynamic carbon intensity calculations, both electric heat pump based heating systems, RISE and ASHP show a significant increase (>15%) in carbon emissions for space heating. The results also show that whilst the RISE system’s thermal storage helps to reduce running costs using a time of use tariff (TOU), it only provides a small benefit in carbon emissions.
    • Comparative Potential of Natural Gas, Coal and Biomass Fired Power Plant with Post - combustion CO2 Capture and Compression

      Ali, Usman; Font Palma, Carolina; Akram, Muhammad; Agbonghae, Elvis O.; Ingham, Derek B.; Pourkashanian, Mohamed; University of Sheffield, University of Chester, Nigerian National Petroleum Corporation (Elsevier, 2017-06-07)
      The application of carbon capture and storage (CCS) and carbon neutral techniques should be adopted to reduce the CO2 emissions from power generation systems. These environmental concerns have renewed interest towards the use of biomass as an alternative to fossil fuels. This study investigates the comparative potential of different power generation systems, including NGCC with and without exhaust gas recirculation (EGR), pulverised supercritical coal and biomass fired power plants for constant heat input and constant fuel flowrate cases. The modelling of all the power plant cases is realized in Aspen Plus at the gross power output of 800 MWe and integrated with a MEA-based CO2 capture plant and a CO2 compression unit. Full-scale detailed modelling of integrated power plant with a CO2 capture and compression system for biomass fuel for two different cases is reported and compared with the conventional ones. The process performance, in terms of efficiency, emissions and potential losses for all the cases, is analysed. In conclusion, NGCC and NGCC with EGR integrated with CO2 capture and compression results in higher net efficiency and least efficiency penalty reduction. Further, coal and biomass fired power plants integrated with CO2 capture and compression results in higher specific CO2 capture and the least specific losses per unit of the CO2 captured. Furthermore, biomass with CO2 capture and compression results in negative emissions.
    • Comparing and combining time series trajectories using Dynamic Time Warping

      Vaughan, Neil; Gabrys, Bogdan; Bournemouth University (Elsevier, 2016-09-04)
      This research proposes the application of dynamic time warping (DTW) algorithm to analyse multivariate data from virtual reality training simulators, to assess the skill level of trainees. We present results of DTW algorithm applied to trajectory data from a virtual reality haptic training simulator for epidural needle insertion. The proposed application of DTW algorithm serves two purposes, to enable (i) two trajectories to be compared as a similarity measure and also enables (ii) two or more trajectories to be combined together to produce a typical or representative average trajectory using a novel hierarchical DTW process. Our experiments included 100 expert and 100 novice simulator recordings. The data consists of multivariate time series data-streams including multi-dimensional trajectories combined with force and pressure measurements. Our results show that our proposed application of DTW provides a useful time-independent method for (i) comparing two trajectories by providing a similarity measure and (ii) combining two or more trajectories into one, showing higher performance compared to conventional methods such as linear mean. These results demonstrate that DTW can be useful within virtual reality training simulators to provide a component in an automated scoring and assessment feedback system.
    • Comparing Terahertz transmission response on pH-dependent apomyoglobin proteins dynamics with circular dichroism

      Qiu, Junyi; Yang, Bin; Sushko, Oleksandr; Pikersgill, Richard W.; Donnan, Robert S.; University of Chester (IEEE, 2014-12-08)
      Terahertz time domain spectroscopy (THz-TDS) was used to study the transmission responses of pH-dependent apomyoglobin (ApoMb) dissolved solutions in 0.2-2.2 THz frequency domain, the THz-TDS technique was also benchmarked against circular dichroism (CD) by studying pH-related folding states changes of ApoMb protein. Results revealed that differences of pH-dependent ApoMb/water dynamics can be detected directly by the THz refractive index spectrum, and these differences are further proved to be caused mainly the effect of protonation of water and possibly water response leaded by protein conformation change.
    • Comparison of numerical methods for fractional differential equations

      Ford, Neville J.; Connolly, Joseph A. (American Institute of Mathematical Sciences/Shanghai Jiao Tong University, 2006-06)
      This article discusses and evaluates the merits of five numerical methods for the solution of single term fractional differential equations.
    • A Compensation Method for Active Phased Array Antennas : Using a Strain-Electromagnetic Coupling Model

      Shi, Yu; Wang, Congsi; Wang, Yan; Yuan, Shuai; Duan, Baoyan; Lian, Peiyuan; Xue, Song; Du, Biao; Gao, Wei; Wang, Zhihai; et al.
      Physical deformation due to service loads seriously degrades the electromagnetic performance of active phased array antennas. However, traditional displacement-based compensation methods are moderately difficult to use because displacement measurements generally require stable references, which are hard to realize for antennas in service. For deformed antennas, strain information is directly related to their displacement, and strain sensors can overcome carrier platform constraints to measure real-time strain without affecting the antenna radiation-field distribution. We thus present a compensation method based on strain information for in-service antennas. First, the minimum number of strain sensors is determined as the main modal-order-based modal effective mass fraction. According to the modal method and analysis of spatial phase-distribution errors related to strain, a coupled strain-electromagnetic model is established to evaluate antenna performance from the measured strain. The corresponding excitation phase from the measured strain is adjusted to compensate antenna performance. Finally, the method is experimentally validated using an X-band active phased array antenna under the influence of typical deformation conditions for both boresightand scanned beams. The results demonstrate that the presented method can effectively compensate for the performance of service antennas directly from the measured strain information.
    • Composite Constructions of Self-Dual Codes from Group Rings and New Extremal Self-Dual Binary Codes of Length 68

      Dougherty, Steven; Gildea, Joe; Kaya, Abidin; Korban, Adrian; University of Scranton; University of Chester; Sampoerna University ; University of Chester (American Institute of Mathematical Sciences, 2019-11-30)
      We describe eight composite constructions from group rings where the orders of the groups are 4 and 8, which are then applied to find self-dual codes of length 16 over F4. These codes have binary images with parameters [32, 16, 8] or [32, 16, 6]. These are lifted to codes over F4 + uF4, to obtain codes with Gray images extremal self-dual binary codes of length 64. Finally, we use a building-up method over F2 + uF2 to obtain new extremal binary self-dual codes of length 68. We construct 11 new codes via the building-up method and 2 new codes by considering possible neighbors.