• A Taylor-Surrogate-Model-Based Method for the Electrical Performance of Array Antennas Under Interval Position Errors

      Wang, Congsi; Yuan, Shuai; Gao, Wei; Jiang, Chao; Zhu, Cheng; Li, Peng; Wang, Zhihai; Peng, Xuelin; Shi, Yu; Xidian University; University of New South Wales; Hunan University; Nanjing Research Institute of Electronics Technology; University of Chester
      In this letter, a Taylor-surrogate-model-based method (TSMBM) is proposed to predict the bounds of power pattern of array antennas with interval position errors of antenna elements. The advantage of TSMBM is that it provides the approximate analytical solution of the problem with high precision and free of “wrapping effect.” First, the integral form of the Taylor surrogate model (IFTSM) of the distorted power pattern of array antennas is deduced. Then, the extrema point vector of IFTSM can be readily calculated within a set composed of bounds, –1 and 1. Finally, the bounds of the distorted power pattern are determined by submit- ting the extrema point vector of IFTSM to the distorted power pattern. Representative examples are presented to demonstrate the accuracy and effectiveness of the method.
    • In situ fabrication of carbon fibre–reinforced polymer composites with embedded piezoelectrics for inspection and energy harvesting applications

      Yan, Xue; Courtney, Charles; Bowen, Chris; Gathercole, Nicholas; Wen, Tao; Jia, Yu; Shi, Yu; Aerospace Research Institute of Material and Processing Technology; University of Bath; University of Chester
      Current in situ damage detection of fibre-reinforced composites typically uses sensors which are attached to the structure. This may make periodic inspection difficult for complex part geometries or in locations which are difficult to reach. To overcome these limitations, we examine the use of piezoelectric materials in the form of macro-fibre composites that are embedded into carbon fibre–reinforced polymer composites. Such a multi-material system can provide an in situ ability for damage detection, sensing or energy harvesting. In this work, the piezoelectric devices are embedded between the carbon fibre prepreg, and heat treated at elevated temperatures, enabling complete integration of the piezoelectric element into the structure. The impact of processing temperature on the properties of the macro-fibre composites are assessed, in particular with respect to the Curie temperature of the embedded ferroelectric. The mechanical properties of the carbon fibre–reinforced polymer composites are evaluated to assess the impact of the piezoelectric on tensile strength. The performance of the embedded piezoelectric devices to transmit and receive ultrasonic signals is evaluated, along with the potential to harvest power from mechanical strain for self-powered systems. Such an approach provides a route to create multi-functional materials.
    • Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna

      Wang, Yan; Wang, Congsi; Lian, Peiyuan; Xue, Sone; Liu, Jing; Gao, Wei; Shi, Yu; Wang, Zhihai; Yu, Kunpeng; Peng, Xuelin; et al.
      Active phased array antennas (APAAs) can suffer from the effects of harsh thermal environments, which are caused by the large quantity of power generated by densely packed T/R modules and external thermal impacts. The situation may be worse in the case of limited room and severe thermal loads, due to heat radiation and a low temperature sink. The temperature field of the antenna can be changed. Since large numbers of temperature-sensitive electronic components exist in T/R modules, excitation current output can be significantly affected and the electromagnetic performance of APAAs can be seriously degraded. However, due to a lack of quantitative analysis, it is difficult to directly estimate the effect of temperature on the electromagnetic performance of APAAs. Therefore, this study investigated the electromagnetic performance of APAAs as affected by two key factors—the uniformly distributed temperature field and the temperature gradient field—based on different antenna shapes and sizes, to provide theoretical guidance for their thermal design.
    • Efficient Surrogate Model-Assisted Evolutionary Algorithm for Electromagnetic Design Automation with Applications

      Akinsolu, Mobayode, O. (University of ChesterWrexham Glyndŵr UniversityWrexham Glyndwr University, 2019-10)
      In this thesis, the surrogate model-aware evolutionary search (SMAS) framework is extended for efficient interactive optimisation of multiple criteria electromagnetic (EM) designs and/or devices through a novel method called two-stage interactive efficient EM micro-actuator design optimisation (TIEMO). The first robust analytical and behavioural study of the SMAS framework is also carried out in this thesis to serve as a guide for the meticulous selection of multiple differential evolution (DE) mutation strategies to make SMAS fit for use in parallel computing environments. Based on the study of SMAS and the self-adaptive use of the selected multiple DE mutation strategies and reinforcement learning techniques, a novel method, parallel surrogate model-assisted evolutionary algorithm for EM design (PSAED) is proposed. PSAED is tested extensively using mathematical benchmark problems and numerical EM design problems. For all cases, the efficiency improvement of PSAED compared to state-of-the-art evolutionary algorithms (EAs) is demonstrated by the several times up to about 20 times speed improvement observed and the high quality of design solutions. PSAED is then applied to real-world EM design problems as two purposebuilt methods for antenna design and optimisation and high-performance microelectro-mechanical systems (MEMS) design and optimisation in parallel computing environments, parallel surrogate model-assisted hybrid DE for antenna optimisation (PSADEA) and adaptive surrogate model-assisted differential evolution for MEMS optimisation (ASDEMO), respectively. For all the real-world antenna and MEMS design cases, PSAED methods obtain very satisfactory design solutions using an affordable optimisation time and comparisons are made with available alternative methods. Results from the comparisons show that PSAED methods obtain very satisfactory design solutions in all runs using an affordable optimisation time in each, whereas the alternative methods fail and/or seldom succeed to obtain feasible or satisfactory design solutions. PSAED methods also show better robustness and stability. In the future, PSAED methods will be embedded into commercial CAD/CEM tools and will be further extended for use in higher-order parallel clusters.
    • Probing NaCl hydrate formation from aqueous solutions by Terahertz Time-Domain Spectroscopy

      Yang, Bin; University of Chester
      The cooling-induced formation of hydrate in aqueous NaCl solutions was probed using terahertz time-domain spectroscopy (THz-TDS). It was found that the NaCl hydrate formation is accompanied with emergence of four new absorption peaks at 1.60, 2.43, 3.34 and 3.78 THz. Combining the X-ray diffraction measurement with the solid-state based density functional theory (DFT) calculations, we assign the observed terahertz absorption peaks to the vibrational modes of the formed NaCl⋅2H2O hydrate during cooling. This work dedicates THz-TDS based analysis great potential in studying ionic hydrate and the newly revealed collective vibrational modes could be the sensitive indicators to achieve quantitative analysis in phase transitions and lattice dynamics.
    • Self-Dual Codes using Bisymmetric Matrices and Group Rings

      Gildea, Joe; Kaya, Abidin; Korban, Adrian; Tylyshchak, Alexander; University of Chester ; Sampoerna University ; University of Chester: Uzhgorod National University (Elsevier, 2020-08-14)
      In this work, we describe a construction in which we combine together the idea of a bisymmetric matrix and group rings. Applying this construction over the ring F4 + uF4 together with the well known extension and neighbour methods, we construct new self-dual codes of length 68: In particular, we find 41 new codes of length 68 that were not known in the literature before.
    • Optimization of anti-wear and anti-bacterial properties of beta TiNb alloy via controlling duty cycle in open-air laser nitriding

      Chang, Xianwen; Smith, Graham; Quinn, James; Carson, Louise; Chan, Chi-Wai; Lee, Seunghwan; Technical University of Denmark (Chang, Lee), University of Chester (Smith), Queens University Belfast (Quinn, Chan) (Elsevier, 2020-07-09)
      A multifunctional beta TiNb surface, featuring wear-resistant and antibacterial properties, was successfully created by means of open-air fibre laser nitriding. Beta TiNb alloy was selected in this study as it has low Young’s modulus, is highly biocompatible, and thus can be a promising prosthetic joint material. It is, however, necessary to overcome intrinsically weak mechanical properties and poor wear resistance of beta TiNb in order to cover the range of applications to loadbearing and/or shearing parts. To this end, open-air laser nitriding technique was employed. A control of single processing parameter, namely duty cycle (between 5% and 100%), led to substantially different structural and functional properties of the processed beta TiNb surfaces as analyzed by an array of analytical tools. The TiNb samples nitrided at the DC condition of 60% showed a most enhanced performance in terms of improving surface hardness, anti-friction, antiwear and anti-bacterial properties in comparison with other conditions. These findings are expected to be highly important and useful when TiNb alloys are considered as materials for hip/knee articular joint implants
    • ParaVR: A Virtual Reality Training Simulator for Paramedic Skills maintenance

      Rees, Nigel; Dorrington, Keith; Rees, Lloyd; Day, Thomas W; Vaughan, Neil; John, Nigel W; Welsh Ambulance Services NHS Trust, University of Chester
      Background, Virtual Reality (VR) technology is emerging as a powerful educational tool which is used in medical training and has potential benefits for paramedic practice education. Aim The aim of this paper is to report development of ParaVR, which utilises VR to address skills maintenance for paramedics. Methods Computer scientists at the University of Chester and the Welsh Ambulance Services NHS Trust (WAST) developed ParaVR in four stages: 1. Identifying requirements and specifications 2. Alpha version development, 3. Beta version development 4. Management: Development of software, further funding and commercialisation. Results Needle Cricothyrotomy and Needle Thoracostomy emerged as candidates for the prototype ParaVR. The Oculus Rift head mounted display (HMD) combined with Novint Falcon haptic device was used, and a virtual environment crafted using 3D modelling software, ported (a computing term meaning transfer (software) from one system or machine to another) onto Oculus Go and Google cardboard VR platform. Conclusion VR is an emerging educational tool with the potential to enhance paramedic skills development and maintenance. The ParaVR program is the first step in our development, testing, and scaling up of this technology.
    • New Extremal binary self-dual codes of length 68 from generalized neighbors

      Gildea, Joe; Kaya, Abidin; Korban, Adrian; Yildiz, Bahattin; University of Chester; Sampoerna University; Northern Arizona University
      In this work, we use the concept of distance between self-dual codes, which generalizes the concept of a neighbor for self-dual codes. Using the $k$-neighbors, we are able to construct extremal binary self-dual codes of length 68 with new weight enumerators. We construct 143 extremal binary self-dual codes of length 68 with new weight enumerators including 42 codes with $\gamma=8$ in their $W_{68,2}$ and 40 with $\gamma=9$ in their $W_{68,2}$. These examples are the first in the literature for these $\gamma$ values. This completes the theoretical list of possible values for $\gamma$ in $W_{68,2}$.
    • Mathematical Modelling of DNA Methylation

      Roberts, Jason; Zagkos, Loukas (University of Chester, 2020-03-09)
      DNA methylation is a key epigenetic process which has been intimately associated with gene regulation. In recent years growing evidence has associated DNA methylation status with a variety of diseases including cancer, Alzheimer’s disease and cardiovascular disease. Moreover, changes to DNA methylation have also recently been implicated in the ageing process. The factors which underpin DNA methylation are complex, and remain to be fully elucidated. Over the years mathematical modelling has helped to shed light on the dynamics of this important molecular system. Although the existing models have contributed significantly to our overall understanding of DNA methylation, they fall short of fully capturing the dynamics of this process. In this work DNA methylation models are developed and improved and their suitability is demonstrated through mathematical analysis and computational simulation. In particular, a linear and nonlinear deterministic model are developed which capture more fully the dynamics of the key intracellular events which characterise DNA methylation. Furthermore, uncertainty is introduced into the model to describe the presence of intrinsic and extrinsic cell noise. This way a stochastic model is constructed and presented which accounts for the stochastic nature in cell dynamics. One of the key predictions of the model is that DNA methylation dynamics do not alter when the quantity of DNA methylation enzymes change. In addition, the nonlinear model predicts DNA methylation promoter bistability, which is commonly observed experimentally. Moreover, a new way of modelling DNA methylation uncertainty is introduced.
    • Overcurrent relays coordination optimisation methods in distribution systems for microgrids: a review

      Abeid, S; Hu, Yanting; University of Chester
      Electric power networks connected with multiple distributed generations (microgrids) require adequate protection coordination. In this paper, the overcurrent relay coordination concept in distribution system has been presented with details. In this available literature, the previous works on optimisation methods utilised for the coordination of over current relays; classification has been made based on the optimisation techniques, non-standard characteristics, new constraints that have been proposed for optimal coordination and dual setting protection schemes. Then a comprehensive review has been done on optimisation techniques including the conventional methods, heuristic and hybrid methods and the relevant issues have been addressed.
    • Higher Order Time Stepping Methods for Subdiffusion Problems Based on Weighted and Shifted Grünwald–Letnikov Formulae with Nonsmooth Data

      Yan, yubin; Wang, Yanyong; Yan, Yuyuan; Pani, Amiya K.; University of Chester, Lvliang University, Jimei University, Indian Institute of Technology Bombay (Springer Link, 2020-05-19)
      Two higher order time stepping methods for solving subdiffusion problems are studied in this paper. The Caputo time fractional derivatives are approximated by using the weighted and shifted Gr\"unwald-Letnikov formulae introduced in Tian et al. [Math. Comp. 84 (2015), pp. 2703-2727]. After correcting a few starting steps, the proposed time stepping methods have the optimal convergence orders $O(k^2)$ and $ O(k^3)$, respectively for any fixed time $t$ for both smooth and nonsmooth data. The error estimates are proved by directly bounding the approximation errors of the kernel functions. Moreover, we also present briefly the applicabilities of our time stepping schemes to various other fractional evolution equations. Finally, some numerical examples are given to show that the numerical results are consistent with the proven theoretical results.
    • An analysis of the L1 scheme for stochastic subdiffusion problem driven by integrated space-time white noise

      Yan, Yubin; Yan, Yuyuan; Wu, Xiaolei; University of Chester, Lvliang University, Jimei University (Elsevier, 2020-06-02)
      We consider the strong convergence of the numerical methods for solving stochastic subdiffusion problem driven by an integrated space-time white noise. The time fractional derivative is approximated by using the L1 scheme and the time fractional integral is approximated with the Lubich's first order convolution quadrature formula. We use the Euler method to approximate the noise in time and use the truncated series to approximate the noise in space. The spatial variable is discretized by using the linear finite element method. Applying the idea in Gunzburger \et (Math. Comp. 88(2019), pp. 1715-1741), we express the approximate solutions of the fully discrete scheme by the convolution of the piecewise constant function and the inverse Laplace transform of the resolvent related function. Based on such convolution expressions of the approximate solutions, we obtain the optimal convergence orders of the fully discrete scheme in spatial multi-dimensional cases by using the Laplace transform method and the corresponding resolvent estimates.
    • LevelEd VR: A virtual reality level editor and workflow for virtual reality level design

      Beever, Lee; Pop, Serban W.; John, Nigel W.; University of Chester
      Virtual reality entertainment and serious games popularity has continued to rise but the processes for level design for VR games has not been adequately researched. Our paper contributes LevelEd VR; a generic runtime virtual reality level editor that supports the level design workflow used by developers and can potentially support user generated content. We evaluated our LevelEd VR application and compared it to an existing workflow of Unity on a desktop. Our current research indicates that users are accepting of such a system, and it has the potential to be preferred over existing workflows for VR level design. We found that the primary benefit of our system is an improved sense of scale and perspective when creating the geometry and implementing gameplay. The paper also contributes some best practices and lessons learned from creating a complex virtual reality tool, such as LevelEd VR.
    • Impact Damage Characteristics of Carbon Fibre Metal Laminates: Experiments and Simulation

      Shi, Yu; Soutis, Constantinos; Pinna, Christophe; University of Chester; The University of Sheffield; The University of Manchester
      In this work, the impact response of carbon fibre metal laminates (FMLs) was experimentally and numerically studied with an improved design of the fibre composite lay-up for optimal mechanical properties and damage resistance. Two different stacking sequences (Carall 3–3/2–0.5 and Carall 5–3/2–0.5) were designed and characterised. Damage at relatively low energy impact energies (≤30 J) was investigated using Ultrasonic C-scanning and X–ray Computed Tomography (X-RCT). A 3D finite element model was developed to simulate the impact induced damage in both metal and composite layers using Abaqus/Explicit. Cohesive zone elements were introduced to capture delamination occurring between carbon fibre/epoxy plies and debonding at the interfaces between aluminium and the composite layers. Carall 5–3/2–0.5 was found to absorb more energy elastically, which indicates better resistance to damage. A good agreement is obtained between the numerically predicted results and experimental measurements in terms of force and absorbed energy during impact where the damage modes such as delamination was well simulated when compared to non-destructive techniques (NDT).
    • Interactive Three-Dimensional Simulation and Visualisation of Real Time Blood Flow in Vascular Networks

      John, Nigel; Pop, Serban; Holland, Mark, I (University of ChesterUnviersity of Chester, 2020-05)
      One of the challenges in cardiovascular disease management is the clinical decision-making process. When a clinician is dealing with complex and uncertain situations, the decision on whether or how to intervene is made based upon distinct information from diverse sources. There are several variables that can affect how the vascular system responds to treatment. These include: the extent of the damage and scarring, the efficiency of blood flow remodelling, and any associated pathology. Moreover, the effect of an intervention may lead to further unforeseen complications (e.g. another stenosis may be “hidden” further along the vessel). Currently, there is no tool for predicting or exploring such scenarios. This thesis explores the development of a highly adaptive real-time simulation of blood flow that considers patient specific data and clinician interaction. The simulation should model blood realistically, accurately, and through complex vascular networks in real-time. Developing robust flow scenarios that can be incorporated into the decision and planning medical tool set. The focus will be on specific regions of the anatomy, where accuracy is of the utmost importance and the flow can develop into specific patterns, with the aim of better understanding their condition and predicting factors of their future evolution. Results from the validation of the simulation showed promising comparisons with the literature and demonstrated a viability for clinical use.
    • Effects of inkjet printed toughener on delamination suppression in drilling of carbon fibre reinforced plastics (CFRPs)

      Shi, Yu; Wang, Xiaonan; Wang, Fuji; Gu, Tianyu; Xie, Pengheng; Jia, Yu; University of Chester; Dalian University of Technology; Aston University
      Delamination has been recognised as the predominant damage induced during the drilling of carbon fibre reinforced plastics (CFRPs). It could significantly reduce the bearing capacity and shorten the service life of the designed component. To enhance the delamination resistance of CFRPs for different applications, great affords have been done to improve their interlaminar fracture toughness. However, due to the difficulty in accurately controlling the amount of the toughener applied in the interface, effect of the toughener content on the toughening efficiency is rarely studied. In this work, an experimental research was developed to investigate the performance of the toughener on the improvement of delamination resistance in the drilling of CFRPs and parametrically optimise the toughener content with the consideration of different feed rates. Specifically, poly(methyl methacrylate) (PMMA) solutions with various concentrations were selected to add on the CFRP prepreg, and co-cured together with layups. The inkjet printing technology was adopted to deposit the PMMA solutions for precisely controlled toughener contents. Through drilling experiments on the toughened CFRPs, it was found that the optimal content of the PMMA solution was 10 wt% to offer the least delamination, in particular, for the situation under the highest feed rate condition. The toughing mechanisms were also concluded by analysing the histories of the thrust force and torque in the drilling process. The results of this study is significantly contribute to the locally toughening of the composite interfaces and the improvement of the drilling quality, which is specifically helpful to strengthen the joint property for the structural design stage for the aircraft.
    • Optimisation and management of energy generated by a multifunctional MFC-integrated composite chassis for rail vehicles

      Liu, Yiding; Du, Sijun; Micallef, Christopher; Jia, Yu; Shi, Yu; Hughes, Darren; University of Warwick; University of California at Berkeley; Aston University; University of Chester
      With the advancing trend towards lighter and faster rail transport, there is an increasing interest in integrating composite and advanced multifunctional materials in order to infuse smart sensing and monitoring, energy harvesting and wireless capabilities within the otherwise purely mechanical rail structures and the infrastructure. This paper presents a holistic multiphysics numerical study, across both mechanical and electrical domains, that describes an innovative technique of harvesting energy from a piezoelectric micro fiber composites (MFC) built-in composite rail chassis structure. Representative environmental vibration data measured from a rail cabin have been critically leveraged here to help predict the actual vibratory and power output behaviour under service. Time domain mean stress distribution data from the Finite Element simulation were used to predict the raw AC voltage output of the MFCs. Conditioned power output was then calculated using circuit simulation of several state-of-the-art power conditioning circuits. A peak instantaneous rectified power of 181.9 mW was obtained when eight-stage Synchronised Switch Harvesting Capacitors (SSHC) from eight embedded MFCs were located. The results showed that the harvested energy could be sufficient to sustain a self-powered structural health monitoring system with wireless communication capabilities. This study serves as a theoretical foundation of scavenging for vibrational power from the ambient state in a rail environment as well as to pointing to design principles to develop regenerative and power neutral smart vehicles.
    • UV phototransistors based upon spray coated and sputter deposited ZnO TFTs

      Kumar, Dinesh; Gomes, Tiago; Santos, Lucas; Smith, Graham; Kettle, Jeff; Bangor University (Kumar, Kettle), Sao Paulo State University (Gomes, Alves, Santos), University of Chester (Smith)
      A comparison of Zinc Oxide (ZnO) phototransistors prepared by spray and sputter coating process is presented. The work shows that spray coated layers provide significant advantages in sensor response over ZnO phototransistors made by physical vapour deposition and we show that spray deposited ZnO phototransistors can exhibit state-of-the-art performances for UV photodetectors. Topographic images of the samples surface shows that there is increase in surface roughness in spray coated samples indicating increasing grain sizes, which is considered the source of the greater sensor responsivity. X-ray photoelectron spectroscopy (XPS) is also used to understand the root cause of the greater UV responsivity. It was observed that sprayed ZnO TFTs are more sensitive to UV radiation due to higher adsorption of oxygen level. Responsivity and external quantum efficiency (EQE) of the sprayed and sputtered ZnO TFTs are also evaluated.
    • New binary self-dual codes via a generalization of the four circulant construction

      Gildea, Joe; Kaya, Abidin; Yildiz, Bahattin; University of Chester ; Sampoerna University ; Northern Arizona University (Croatian Mathematical Society, 2020-05-31)
      In this work, we generalize the four circulant construction for self-dual codes. By applying the constructions over the alphabets $\mathbb{F}_2$, $\mathbb{F}_2+u\mathbb{F}_2$, $\mathbb{F}_4+u\mathbb{F}_4$, we were able to obtain extremal binary self-dual codes of lengths 40, 64 including new extremal binary self-dual codes of length 68. More precisely, 43 new extremal binary self-dual codes of length 68, with rare new parameters have been constructed.