• Policing the Cyber Threat: Exploring the threat from Cyber Crime and the ability of local Law Enforcement to respond

      Eze, Thaddeus; Hull, Matthew; Speakman, Lee; University of Chester (Proceedings of the IEEE, 2019-07-01)
      The landscape in which UK policing operates today is a dynamic one, and growing threats such as the proliferation of cyber crime are increasing the demand on police resources. The response to cyber crime by national and regional law enforcement agencies has been robust, with significant investment in mitigating against, and tackling cyber threats. However, at a local level, police forces have to deal with an unknown demand, whilst trying to come to terms with new crime types, terminology and criminal techniques which are far from traditional. This paper looks to identify the demand from cyber crime in one police force in the United Kingdom, and whether there is consistency in the recording of crime. As well as this, it looks to understand whether the force can deal with cyber crime from the point of view of the Police Officers and Police Staff in the organisation.
    • A Posteriori Analysis for Space-Time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain

      Antonopoulou, Dimitra; Plexousakis, Michael; University of Chester; University of Crete (ECP sciences, 2019-04-24)
      This paper presents an a posteriori error analysis for the discontinuous in time space-time scheme proposed by Jamet for the heat equation in multi-dimensional, non-cylindrical domains [25]. Using a Cl ement-type interpolant, we prove abstract a posteriori error bounds for the numerical error. Furthermore, in the case of two-dimensional spatial domains we transform the problem into an equivalent one, of parabolic type, with space-time dependent coe cients but posed on a cylindrical domain. We formulate a discontinuous in time space{time scheme and prove a posteriori error bounds of optimal order. The a priori estimates of [19] for general parabolic initial and boundary value problems are used in the derivation of the upper bound. Our lower bound coincides with that of Picasso [36], proposed for adaptive, Runge-Kutta finite element methods for linear parabolic problems. Our theoretical results are verified by numerical experiments.
    • A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations

      Karakatsani, Fotini; University of Chester (Oxford University Press, 2015-07-22)
      We derive optimal order a posteriori error estimates for fully discrete approximations of initial and boundary value problems for linear parabolic equations. For the discretisation in time we apply the fractional-step #-scheme and for the discretisation in space the finite element method with finite element spaces that are allowed to change with time.
    • A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem

      Baensch, Eberhard; Karakatsani, Fotini; Makridakis, Charalambos; University of Erlangen; University of Chester; University of Crete; Foundation for Research & Technology, Greece; University of Sussex (Springer, 2018-05-02)
      This work is devoted to a posteriori error analysis of fully discrete finite element approximations to the time dependent Stokes system. The space discretization is based on popular stable spaces, including Crouzeix–Raviart and Taylor–Hood finite element methods. Implicit Euler is applied for the time discretization. The finite element spaces are allowed to change with time steps and the projection steps include alternatives that is hoped to cope with possible numerical artifices and the loss of the discrete incompressibility of the schemes. The final estimates are of optimal order in L∞(L2) for the velocity error.
    • The Potential of Incremental Forming Techniques for Aerospace Applications

      de Sousa, Ricardo Alves; Afonso, Daniel; Rubino, Filice; Behera, Amar Kumar; University of Aveiro; King Juan Carlos University; University of Chester
      Incremental sheet metal forming (ISF) processes are part of a set of non-classical techniques that allow producing low-batches, customized and/or specific geometries for advanced engineering applications, such as aerospace, automotive and biomedical parts. Combined or not with other joining processes and additive manufacturing techniques, ISF processes permit rapid prototyping frameworks, and can be included in the class of smart manufacturing processes. This chapter discusses the fundamentals of ISF technology, key attributes, future challenges and presents few examples related to the use of incremental forming for the development of complex parts as specifically found in aerospace applications such as aerofoils. The use of incremental forming to produce customized designs and to perform quick try-outs of ready-to-use parts contributes to decrease the time to market, decrease tooling cost and increase part design freedom.
    • The power of VNA-driven quasi-optics to sense group molecular action in condensed phase systems

      Donnan, Robert S.; Tian, Kun V.; Yang, Bin; Chass, Gregory A.; University of Chester (2014-12-08)
      The versatility for quasi-optical circuits, driven by modern vector network analysers, is demonstrated for the purpose of low energy (meV) coherent spectroscopy. One such example is shown applied to the curing dynamics of a non-mercury-based dental cement. This highlights the special place the methodology holds as a `soft-probe' to reveal the time-resolved energetics of condensed phased systems as they self-organise to adopt their low energy state.
    • Power System with Variable Speed Wind Turbine and Diesel Generation Units

      Hu, Yanting; Chen, Zhe; Glyndwr; Aalborg University (EER, 2014-01-20)
      Thispaper presents a power system consisting of wind turbines, diesel generation units, and energy storage system. Both wind turbines and diesel engine adopt variable speed operation mode;and power electronic interface are used for the generation units which provide flexible and wide range of control on the power. The system configuration, characteristics, operation principles are presented. The controller and control strategies are discussed. The simulation studies have been performed and the results are presented.
    • Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations

      Norton, Stewart J.; Ford, Neville J.; University of Chester (AIMS Press, 2006-06)
      This article considers numerical approximations to parameter-dependent linear and logistic stochastic delay differential equations with multiplicative noise. The aim of the investigation is to explore the parameter values at which there are changes in qualitative behaviour of the solutions. One may use a phenomenological approach but a more analytical approach would be attractive. A possible tool in this analysis is the calculation of the approximate local Lyapunov exponents. In this paper we show that the phenomenological approach can be used effectively to estimate bifurcation parameters for deterministic linear equations but one needs to use the dynamical approach for stochastic equations.
    • Predicting the critical heat flux in pool boiling based on hydrodynamic instability induced irreversible hot spots

      Zhao, Huayong; Williams, Andrew; Loughborough University; University of Chester (Elsevier, 2018-03-07)
      A new model, based on the experimental observation reported in the literature that CHF is triggered by the Irreversible Hot Spots (IHS), has been developed to predict the Critical Heat Flux (CHF) in pool boiling. The developed Irreversible Hot Spot (IHS) model can predict the CHF when boiling methanol on small flat surfaces and long horizontal cylinders of different sizes to within 5% uncertainty. It can also predict the effect of changing wettability (i.e. contact angle) on CHF to within 10% uncertainty for both hydrophilic and hydrophobic surfaces. In addition, a linear empirical correlation has been developed to model the bubble growth rate as a function of the system pressure. The IHS model with this linear bubble growth coefficient correlation can predict the CHF when boiling water on both flat surfaces and long horizontal cylinders to within 5% uncertainty up to 10 bar system pressure, and the CHF when boiling methanol on a flat surface to within 10% uncertainty up to 5 bar. The predicted detailed bubble grow and merge process from various sub-models are also in good agreement with the experimental results reported in the literature.
    • A predictor corrector approach for the numerical solution of fractional differential equations

      Diethelm, Kai; Ford, Neville J.; Freed, Alan D. (Springer, 2002-07)
      This article discusses an Adams-type predictor-corrector method for the numerical solution of fractional differential equations.
    • A preliminary study to enhance the tribological performance of CoCrMo alloy by laser remelting for articular joint implant applications

      Chan, Chi-Wai; Smith, Graham C.; Lee, Seunghwan; Queens University Belfast; University of Chester; Technical University Denmark (MDPI, 2018-03-02)
      CoCrMo alloy has long been used as a pairing femoral head material for articular joint implant applications because of its biocompatibility and reliable tribological performance. However, friction and wear issues are still present for CoCrMo (metal)/CoCrMo (metal) or CoCrMo (metal)/ultrahigh molecular weight polyethylene (UHMWPE) (plastic) pairs in clinical observations. The particulate wear debris generated from the worn surfaces of CoCrMo or UHMWPE can pose a severe threat to human tissues, eventually resulting in the failure of implants and the need for revision surgeries. As a result, a further improvement in tribological properties of this alloy is still needed, and it is of great interest to both the implant manufacturers and clinical surgeons. In this study, the surface of CoCrMo alloy was laser-treated by a fibre laser system in an open-air condition (i.e., no gas chamber required). The CoCrMo surfaces before and after laser remelting were analysed and characterised by a range of mechanical tests (i.e., surface roughness measurement and Vickers micro-hardness test) and microstructural analysis (i.e., XRD phase detection). The tribological properties were assessed by pin-on-disk tribometry and dynamic light scattering (DLS). Our results indicate that the laser-treated surfaces demonstrated a friction-reducing effect for all the tribopairs (i.e., CoCrMo against CoCrMo and CoCrMo against UHHMWPE) and enhanced wear resistance for the CoCrMo/CoCrMo pair. Such beneficial effects are chiefly attributable to the presence of the laser-formed hard coating on the surface. Laser remelting possesses several competitive advantages of being a clean, non-contact, fast, highly accurate and automated process compared to other surface coating methods. The promising results of this study point to the possibility that laser remelting can be a practical and effective surface modification technique to further improve the tribological performance of CoCr-based orthopaedic implants.
    • Prenatal exposures and exposomics of asthma

      Choi, Hyunok; Mc Auley, Mark T.; Lawrence, David A.; University at Albany ; University of Chester ; Center for Medical Sciences, Albany, NY (AIMS Press, 2015-02-19)
      This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental media
    • Preparation, Characterisation and Measurement of the in vitro Cytotoxicity of Mesoporous Silica Nanoparticles Loaded with Cytotoxic Pt(II) Oxadiazoline Complexes

      Wagner, Gabriele; Herrmann, Rudolf; Department of Natural Sciences, University of Chester, Thornton Science Park, Pool Lane, Ince, Chester, CH2 4NU, UK, and Institute of Physics, University of Augsburg, Universitätsstr. 1, D-86135 Augsburg, Germany. (World Academy of Science, Engineering and Technology, 2016-03-07)
      Cytotoxic platinum compounds play a major role in the chemotherapy of a large number of human cancers. However, due to the severe side effects for the patient and other problems associated with their use, there is a need for the development of more efficient drugs and new methods for their selective delivery to the tumours. One way to achieve the latter could be in the use of nanoparticular carrier materials that can adsorb or chemically bind the drug. In the cell, the drug is supposed to be slowly released, either by physical desorption or by dissolution of the particle framework. Ideally, the cytotoxic properties of the platinum drug unfold only then, in the cancer cell and over a longer period of time due to the gradual release. In this paper, we report on our first steps in this direction. The binding properties of a series of cytotoxic Pt(II) oxadiazoline compounds to mesoporous silica particles has been studied by NMR and UV/vis spectroscopy. High loadings were achieved when the Pt(II) compound was relatively polar, and has been dissolved in a relatively unpolar solvent before the silica was added. Typically, 6-10 hours were required for complete equilibration, suggesting the adsorption did not only occur to the outer surface but also to the interior of the pores. The untreated and Pt(II) loaded particles were characterised by C,H,N combustion analysis, BET/BJH nitrogen sorption, electron microscopy (REM and TEM) and EDX. With the latter methods we were able to demonstrate the homogenous distribution of the Pt(II) compound on and in the silica particles, and no Pt(II) bulk precipitate had formed. The in vitro cytotoxicity in a human cancer cell line (HeLa) has been determined for one of the new platinum compounds adsorbed to mesoporous silica particles of different size, and compared with the corresponding compound in solution. The IC50 data are similar in all cases, suggesting that the release of the Pt(II) compound was relatively fast and possibly occurred before the particles reached the cells. Overall, the platinum drug is chemically stable on silica and retained its activity upon prolonged storage.
    • Probing NaCl hydrate formation from aqueous solutions by Terahertz Time-Domain Spectroscopy

      Yang, Bin; University of Chester
      The cooling-induced formation of hydrate in aqueous NaCl solutions was probed using terahertz time-domain spectroscopy (THz-TDS). It was found that the NaCl hydrate formation is accompanied with emergence of four new absorption peaks at 1.60, 2.43, 3.34 and 3.78 THz. Combining the X-ray diffraction measurement with the solid-state based density functional theory (DFT) calculations, we assign the observed terahertz absorption peaks to the vibrational modes of the formed NaCl⋅2H2O hydrate during cooling. This work dedicates THz-TDS based analysis great potential in studying ionic hydrate and the newly revealed collective vibrational modes could be the sensitive indicators to achieve quantitative analysis in phase transitions and lattice dynamics.
    • Process simulation and thermodynamic analysis of a micro turbine with post-combustion CO2 capture and exhaust gas recirculation

      Ali, Usman; Best, Thom; Finney, Karen N.; Font Palma, Carolina; Hughes, Kevin J.; Ingham, Derek B.; Pourkashanian, Mohamed; University of Leeds (Elsevier, 2014-12-31)
      With the effects of the emissions from power plants causing global climate change, the trend towards lower emission systems such as natural gas power plant is increasing. In this paper a Turbec T100 micro gas turbine is studied. The system is assessed thermodynamically using a steady-state model; model results of its alteration with exhaust gas recirculation (EGR) are presented in this paper. The process simulation with EGR offers a useful assessment when integrated with post-combustion CO2 capture. The EGR model results in the enrichment of the CO2 which decrease the energy demand of the CO2 capture system.
    • Production of Biomethane from Agricultural Waste Using a Cryogenic Carbon Capture Process

      Font Palma, Carolina; Lychnos, George; Willson, Paul; University of Chester; PMW Technology Limited (Energy Proceedings, 2019)
      This paper evaluates a novel cryogenic carbon capture process to upgrade biogas produced from agricultural waste. The A3C cryogenic process offers simplicity and compactness with lower capital and operating costs compared to many alternative processes. The work addresses potential technical issues presented by trace contaminants in the raw biogas including hydrogen sulphide, organics and siloxanes. It is found that the A3C process offers high CO2 removal with minimal biomethane losses while requiring simple raw gas treatment.
    • Programmable logic controllers and Direct digital controls in Buildings

      Khalid, Yousaf; University of Chester (2018-09-30)
      The concept of programmable logic controller (PLC) originated over the last century that has revolutionised the industrial sector. In the last few decades PLC in the form of DDC has been commonly used in Building Energy Management Systems (BEMS). The contribution of this work is to analyse PLC/DDC role in the ongoing BEMS advancements in the building sector. Currently DDC are not understood by building design and simulation engineers who assess the controllability of the building in practice. This paper would enhance the understanding of integrating DDC in buildings and influence creation of better modelling and simulation tools for assessing their impact on energy performance in practice.
    • Promises and Challenges of Growing Microalgae in Wastewater

      Osundeko, Olumayowa; Ansolia, Preeti; Kumar Gupta, Sanjay; Bag, Pushan; Bajhaiya, Amit K.; University of Manchester (Springer, 2019-01-22)
      Microalgae have been theoretically described as a sustainable feedstock for biofuel production. However, there are still some concerns and obstacles that need to be overcome in order to translate the theoretical promise into commercial and economic success. These obstacles include a high requirement for nutrients and sustainable water source and the identification of affordable cultivation conditions. It has been suggested that growing microalgae in wastewater can potentially offset some of these obstacles. Microalgae can perform a dual role for remediation of nutrient pollutants and biomass production when grown in wastewater. However, there are huge challenges to overcome before this route can be exploited in an economically and environmentally sustainable manner. In the present chapter, the potentials and challenges of growing microalgae in wastewater and its future implications are discussed in detail.
    • A promising laser nitriding method for the design of next generation orthopaedic implants: Cytotoxicity and antibacterial performance of titanium nitride (TiN) wear nano-particles, and enhanced wear properties of laser-nitrided Ti6Al4V surfaces

      Chan, Chi Wai; Quinn, James; Hussain, Issam; Carson, Louise; Smith, Graham; Lee, Seunghwan; Queen's University Belfast; University of Lincoln; University of Chester; Technical University of Denmark
      In this study, fibre laser nitriding in open air was applied to the Ti6Al4V alloy in order to improve the wear resistance, thus minimising the generation of wear debris from the surfaces for load-bearing applications. The recent technological advancement to perform the laser nitriding process in open air allows the opportunity to surface-harden any curved and/or specific areas in the hip implants. The laser nitriding process was modulated between the pulsed mode and continuous wave (CW) mode by varying the duty cycle between 60% (pulsed) and 100% (CW). Our experimental investigations were divided into two stages in sequential order: Firstly, to create crack-free, homogenous and golden laser-nitrided surfaces by the proper selection of duty cycle. Secondly, it was to analyse the properties (both physical and chemical) of the wear debris as well as to evaluate their cytotoxicity and antibacterial performance. The laser-nitrided surfaces were characterised and tested using a variety of techniques, incl. optical microscopy, SEM-EDX, XRD, surface roughness and Vickers hardness measurements, as well as tribological tests (i.e. ball-on-disk wear tests and DLS). The wear debris from the laser-nitrided surfaces (collected in the wear tests) were analysed using TEM, XPS and SEM-EDX. Their toxicity was evaluated using in-vitro cell culture with macrophages at two time points (24 h and 48 h). The antibacterial performance was tested in vitro against two of the most commonly implicated pathogens in orthopaedic infection, namely Staphylococcus aureus and Escherichia coli for 24 h. Our findings indicated that the wear resistance of the surfaces after laser nitriding was significantly improved and the amount of wear debris generated was also significantly reduced. The wear particles from the laser-nitrided surfaces were in the nano-sized scale range (0.01 µm to 0.04 µm or 10 nm to 40 nm). They were found to be less toxic towards RAW264.7 macrophages, yet display antimicrobial properties against Staphylococcus aureus, when compared with the larger particles (1.5 µm in size) from the untreated surfaces. It is envisioned that successful fabrication of the non-toxic and highly wear-resistant TiN layer in Ti6Al4V using the open-air laser nitriding technique can enable progress towards the development of metal-on-metal (MoM) hip implants fully made of Ti-based alloys
    • Prospects for petcoke utilization with CO 2 capture in Mexico

      Font Palma, Carolina; Gonzalez Diaz, Abigail; University of Chester; Instituto Nacional de Electricidad y Energías Limpias (INEEL) (Elsevier, 2018-01-31)
      This paper evaluates the introduction of carbon capture and storage (CCS) to Mexico. The gasification technology is presented as a potential alternative to be applied into refinery plants due to high petcoke production. Although economic aspects, such as fuel price and selling CO2, are important in the selection of CCS alternatives, there are other limitations, i.e. water availability and space. In March 2014, Mexico launched its CCS technological roadmap. However, an evaluation of the installation of new CO2-capture ready power plants was not considered. For that reason, this study could be useful to create a technology roadmap that includes the design of CO2 capture plants into refineries and how they will have to operate for CO2 emissions reduction, and taking advantage that most of refineries and petrochemical plants are close to oil fields for enhanced oil recovery (EOR). Integrated gasification combined cycle (IGCC) with CCS was chosen in this paper for power generation using petcoke as feedstock. The emissions of CO2 in kg/kWh could be reduced by 68%.