• An Altered Four Circulant Construction for Self-Dual Codes from Group Rings and New Extremal Binary Self-dual Codes I

      Gildea, Joe; Kaya, Abidin; Yildiz, Bahattin; University of Chester; Sampoerna University; Northern Arizona University (Elsevier, 2019-08-07)
      We introduce an altered version of the four circulant construction over group rings for self-dual codes. We consider this construction over the binary field, the rings F2 + uF2 and F4 + uF4; using groups of order 4 and 8. Through these constructions and their extensions, we find binary self-dual codes of lengths 16, 32, 48, 64 and 68, many of which are extremal. In particular, we find forty new extremal binary self-dual codes of length 68, including twelve new codes with \gamma=5 in W68,2, which is the first instance of such a value in the literature.
    • Alternative Representations of 3D-Reconstructed Heritage Data

      Miles, Helen C.; Wilson, Andrew T.; Labrosse, Frédéric; Tiddeman, Bernard; Griffiths, Seren; Edwards, Ben; Ritsos, Panagiotis D.; Mearman, Joseph W.; Moller, Katharina; Karl, Raimund; et al. (ACM, 2016-02-20)
      By collecting images of heritage assets from members of the public and processing them to create 3D-reconstructed models, the HeritageTogether project has accomplished the digital recording of nearly 80 sites across Wales, UK. A large amount of data has been collected and produced in the form of photographs, 3D models, maps, condition reports, and more. Here we discuss some of the different methods used to realize the potential of this data in different formats and for different purposes. The data are explored in both virtual and tangible settings, and—with the use of a touch table—a combination of both. We examine some alternative representations of this community-produced heritage data for educational, research, and public engagement applications.
    • Alternative selection of processing additives to enhance the lifetime of OPVs

      Kettle, Jeff; Waters, Huw; Horie, Masaki; Smith, Graham C.; University of Bangor (Kettle, Waters), National Tsing Hua University Taiwan (Horie), University of Chester (Smith) (IOP Publishing, 2016-01-27)
      The use of processing additives is known to accelerate the degradation of Organic Photovoltaics (OPVs) and therefore, this paper studies the impact of selecting alternative processing additives for PCPDTBT:PC71BM solar cells in order to improve the stability. The use of naphthalene-based processing additives has been undertaken, which is shown to reduce the initial power conversion efficiency by 23%-42%, primarily due to a decrease in the short-circuit current density, but also fill factor. However, the stability is greatly enhanced by using such additives, with the long term stability (T50%) enhanced by a factor of four. The results show that there is a trade-off between initial performance and stability to consider when selecting the initial process additives. XPS studies have provided some insight into the decreased degradation and show that using 1-chloronaphthalene (ClN) leads to reduced morphology changes and reduced oxidation of the thiophene-ring within the PCPDTBT backbone.
    • An overview of thermal necrosis: present and future

      Mediouni, Mohamed; Kucklick, Theodore; Poncet, Sébastien; Madiouni, Riadh; Abouaomar, Amine; Madry, Henning; Cucchiarini, Magali; Chopko, Bohdan; Vaughan, Neil; Arora, Manit; et al. (Informa UK Limited, 2019-05-10)
    • Analysis of fractional differential equations

      Diethelm, Kai; Ford, Neville J. (Elsevier Science, 2002-01-15)
    • An analysis of the L1 scheme for stochastic subdiffusion problem driven by integrated space-time white noise

      Yan, Yubin; Yan, Yuyuan; Wu, Xiaolei; University of Chester, Lvliang University, Jimei University (Elsevier, 2020-06-02)
      We consider the strong convergence of the numerical methods for solving stochastic subdiffusion problem driven by an integrated space-time white noise. The time fractional derivative is approximated by using the L1 scheme and the time fractional integral is approximated with the Lubich's first order convolution quadrature formula. We use the Euler method to approximate the noise in time and use the truncated series to approximate the noise in space. The spatial variable is discretized by using the linear finite element method. Applying the idea in Gunzburger \et (Math. Comp. 88(2019), pp. 1715-1741), we express the approximate solutions of the fully discrete scheme by the convolution of the piecewise constant function and the inverse Laplace transform of the resolvent related function. Based on such convolution expressions of the approximate solutions, we obtain the optimal convergence orders of the fully discrete scheme in spatial multi-dimensional cases by using the Laplace transform method and the corresponding resolvent estimates.
    • An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data

      Yan, Yubin; Khan, Monzorul; Ford, Neville J.; University of Chester (Society for Industrial and Applied Mathematics, 2018-01-11)
      We introduce a modified L1 scheme for solving time fractional partial differential equations and obtain error estimates for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Jin \et (2016, An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. of Numer. Anal., 36, 197-221) established an $O(k)$ convergence rate for the L1 scheme for smooth and nonsmooth initial data for the homogeneous problem, where $k$ denotes the time step size. We show that the modified L1 scheme has convergence rate $O(k^{2-\alpha}), 0< \alpha <1$ for smooth and nonsmooth initial data in both homogeneous and inhomogeneous cases. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
    • Analysis of transient Rivlin-Ericksen fluid and irreversibility of exothermic reactive hydromagnetic variable viscosity

      Olakunle, Salawu; Kareem, Rasaq; Yan, Yubin; Landmark University, Nigeria; Lagos State Polytechnic, Nigeria; University of Chester, UK (Shahid Chamran University of Ahvaz, 2019-03-15)
      The study analysed unsteady Rivlin-Ericksen fluid and irreversibility of exponentially temperature dependent variable viscosity of hydromagnetic two-step exothermic chemical reactive flow along the channel axis with walls convective cooling. The non-Newtonian Hele-Shaw flow of Rivlin-Erickson fluid is driven by bimolecular chemical kinetic and unvarying pressure gradient. The reactive fluid is induced by periodic changes in magnetic field and time. The Newtons law of cooling is satisfied by the constant heat coolant convection exchange at the wall surfaces with the neighboring regime. The dimensionless non-Newtonian reactive fluid equations are numerically solved using a convergent and consistence semi-implicit finite difference technique which are confirmed stable. The response of the reactive fluid flow to variational increase in the values of some entrenched fluid parameters in the momentum and energy balance equations are obtained. A satisfying equations for the ratio of irreversibility, entropy generation and Bejan number are solved with the results presented graphically and discussed quantitatively. From the study, it was obtained that the thermal criticality conditions with the right combination of thermo-fluid parameters, the thermal runaway can be prevented. Also, the entropy generation can minimize by at low dissipation rate and viscosity.
    • An Analysis of Virtual Team Characteristics: A Model for Virtual Project Managers

      Cormican, Kathryn; Morley, Sandra; Folan, Paul; College of Engineering & Informatics, National University of Ireland, Galway. Ireland. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon UK United Kingdom. (Facultad de Economía y Negocios, Universidad Alberto Hurtado, 2015-04)
      An integrated model, created to guide project managers, is outlined for the implementation and management of virtual teams. This model is developed by means of an exploratory literature review and an empirical investigation of virtual team utilization in a multinational medical device manufacturer, which examines several factors critical to their success. A TOWS matrix is used to structure the results of the analysis and to identify future virtual team strategies for the organization. The study demonstrates that a structured approach is essential to ensure that the benefits resulting from virtual teamwork are maximized.
    • Analysis via integral equations of an identification problem for delay differential equations

      Baker, Christopher T. H.; Parmuzin, Evgeny I.; University College Chester ; Institute of Numerical Mathematics, Russian Academy of Sciences (Rocky Mountain Mathematics Consortium, 2004)
    • An analytic approach to the normalized Ricci flow-like equation: Revisited

      Kavallaris, Nikos I.; Suzuki, Takashi; University of Chester ; Osaka University (Elsevier, 2015-01-07)
      In this paper we revisit Hamilton’s normalized Ricci flow, which was thoroughly studied via a PDE approach in Kavallaris and Suzuki (2010). Here we provide an improved convergence result compared to the one presented Kavallaris and Suzuki (2010) for the critical case λ=8πλ=8π. We actually prove that the convergence towards the stationary normalized Ricci flow is realized through any time sequence.
    • Analytical and numerical investigation of mixed-type functional differential equations

      Lima, Pedro M.; Teodoro, M. Filomena; Ford, Neville J.; Lumb, Patricia M.; Instituto Superior Tecnico UTL, Lisbon : Instituto Politecnico de Setubal, Lisbon : University of Chester : University of Chester (Elsevier, 2009-11-09)
      This journal article is concerned with the approximate solution of a linear non-autonomous functional differential equation, with both advanced and delayed arguments.
    • An Analytical and Numerical Study of Magnetic Spring Suspension with Energy Recovery Capabilities

      Jia, Yu; Li, Shasha; Shi, Yu; University of Chester; China National Intellectual Property Administration (MDPI, 2018-11-12)
      As the automotive paradigm shifts towards electric, limited range remains a key challenge. Increasing the battery size adds weight, which yields diminishing returns in range per kilowatt-hour. Therefore, energy recovery systems, such as regenerative braking and photovoltaic cells, are desirable to recharge the onboard batteries in between hub charge cycles. While some reports of regenerative suspension do exist, they all harvest energy in a parasitic manner, and the predicted power output is extremely low, since the majority of the energy is still dissipated to the environment by the suspension. This paper proposes a fundamental suspension redesign using a magnetically-levitated spring mechanism and aims to increase the recoverable energy significantly by directly coupling an electromagnetic transducer as the main damper. Furthermore, the highly nonlinear magnetic restoring force can also potentially enhance rider comfort. Analytical and numerical models have been constructed. Road roughness data from an Australian road were used to numerically simulate a representative environment response. Simulation suggests that 10’s of kW to >100 kW can theoretically be generated by a medium-sized car travelling on a typical paved road (about 2–3 orders of magnitude higher than literature reports on parasitic regenerative suspension schemes), while still maintaining well below the discomfort threshold for passengers (<0.315 m/s2 on average).
    • Analytical and numerical treatment of oscillatory mixed differential equations with differentiable delays and advances

      Ferreira, José M.; Ford, Neville J.; Malique, Md A.; Pinelas, Sandra; Yan, Yubin; Instituto Superior Técnico, Lisbon : University of Chester : University of Chester : Universidade dos Açores : University of Chester (Elsevier, 2011-04-12)
      This article discusses the oscillatory behaviour of the differential equation of mixed type.
    • Angus I. Kirkland and Sarah J. Haigh (Eds.): Nanocharacterization, 2nd ed.

      Smith, Graham C.; Department of Natural Sciences, University of Chester (Springer, 2016-01-29)
      Book review of NanoCharacterisation, second edition, Editors Angus I. Kirkland and Sarah J. Haigh. Published by Royal Society of Chemistry ISBN: 978-1-84973-805-7
    • Anodic stripping voltammetry with graphite felt electrodes for the trace analysis of silver

      Davies, Trevor J.; University of Chester (Royal Society of Chemistry, 2016-05-31)
      Graphite felt (GF) is a mass produced porous carbon electrode material commonly used in redox flow batteries. Previous studies have suggested GF may have valuable applications in electroanalysis as a low cost disposable carbon electrode material, although most GF sensors have used flow cell arrangements. In this work, an elegant wetting technique is employed that allows GF electrodes to be used in quiescent solution to detect trace levels of silver in water via anodic stripping voltammetry. GF electrodes display good repeatability and a limit of detection of 25 nM of Ag+ in 0.1 M HNO3, with a linear range spanning two orders of magnitude. This compares to a value of around 140 nM when using conventional carbon electrodes. Combined with their low cost and disposable nature, the results suggest GF electrodes can make a valuable contribution to electroanalysis.
    • Appearance Modeling of Living Human Tissues

      Maciel, Anderson; Meyer, Gary W.; John, Nigel W.; Walter, Marcelo; Nunes, Augusto L. P.; Baranoski, Gladimir V. G.; Federal Institute of Paraná, Londrina; Universidade Federal do Rio Grande do Sul; University of Minnesota; University of Chester; University of Waterloo (Wiley, 2019-02-27)
      The visual fidelity of realistic renderings in Computer Graphics depends fundamentally upon how we model the appearance of objects resulting from the interaction between light and matter reaching the eye. In this paper, we survey the research addressing appearance modeling of living human tissue. Among the many classes of natural materials already researched in Computer Graphics, living human tissues such as blood and skin have recently seen an increase in attention from graphics research. There is already an incipient but substantial body of literature on this topic, but we also lack a structured review as presented here. We introduce a classification for the approaches using the four types of human tissues as classifiers. We show a growing trend of solutions that use first principles from Physics and Biology as fundamental knowledge upon which the models are built. The organic quality of visual results provided by these Biophysical approaches is mainly determined by the optical properties of biophysical components interacting with light. Beyond just picture making, these models can be used in predictive simulations, with the potential for impact in many other areas.
    • An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data

      Ford, Neville J.; Yan, Yubin; University of Chester (De Gruyter, 2017-10-31)
      In this paper, we shall review an approach by which we can seek higher order time discretisation schemes for solving time fractional partial differential equations with nonsmooth data. The low regularity of the solutions of time fractional partial differential equations implies standard time discretisation schemes only yield first order accuracy. To obtain higher order time discretisation schemes when the solutions of time fractional partial differential equations have low regularities, one may correct the starting steps of the standard time discretisation schemes to capture the singularities of the solutions. We will consider these corrections of some higher order time discretisation schemes obtained by using Lubich's fractional multistep methods, L1 scheme and its modification, discontinuous Galerkin methods, etc. Numerical examples are given to show that the theoretical results are consistent with the numerical results.
    • Assessment of Multi-Domain Energy Systems Modelling Methods

      Stewart, M.; Counsell, John M.; Al-Khaykan, A.; University of Chester (World Academy of Science, Engineering and Technology, 2017-06-06)
      Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous) control of both heat and electricity approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.
    • Assisting Serious Games Level Design with an Augmented Reality Application and Workflow

      Beever, Lee; John, Nigel W.; Pop, Serban R.; University of Chester (Eurographics Proceedings, 2019-09-13)
      With the rise in popularity of serious games there is an increasing demand for virtual environments based on real-world locations. Emergency evacuation or fire safety training are prime examples of serious games that would benefit from accurate location depiction together with any application involving personal space. However, creating digital indoor models of real-world spaces is a difficult task and the results obtained by applying current techniques are often not suitable for use in real-time virtual environments. To address this problem, we have developed an application called LevelEd AR that makes indoor modelling accessible by utilizing consumer grade technology in the form of Apple’s ARKit and a smartphone. We compared our system to that of a tape measure and a system based on an infra-red depth sensor and application. We evaluated the accuracy and efficiency of each system over four different measuring tasks of increasing complexity. Our results suggest that our application is more accurate than the depth sensor system and as accurate and more time efficient as the tape measure over several tasks. Participants also showed a preference to our LevelEd AR application over the depth sensor system regarding usability. Finally, we carried out a preliminary case study that demonstrates how LevelEd AR can be successfully used as part of current industry workflows for serious games level design.