• Aging and condensed phase chemistry affects the hygroscopicity of ambient SOA

      Vogel, Alexander; Müller-Tautges, Christina; Krueger, Mira; Rose, Diana; Schneider, Johannes; Phillips, Gavin J.; Makkonen, Ulla; Hakola, Hannele; Crowley, John N.; Poeschl, Ulrich; et al. (European Aerosol Assembly, 2015-09-30)
      Secondary inorganic and organic aerosol particles are ubiquitous constituents in the atmosphere. They are largely produced through the photo-oxidation of gaseous precursor molecules, such as SO2, NOx and VOCs, from both anthropogenic and natural sources. Once grown to atmospherically relevant sizes, they can act as cloud condensation nuclei (CCN) and thus affect earth’s climate (IPCC, 2013). However, their chemical composition can vary considerably over their atmospheric lifetime (up to one week) as a result of which, their physico-chemical properties may change significantly due to chemical transformation processes (Jimenez et al., 2009). One of these properties is hygroscopicity, which largely depends on the chemical composition. Linking both, measured chemical composition and hygroscopicity helps to advance our current understanding of the hygroscopicity parametrisation. In this work we investigated how photochemical aging of the organic aerosol fraction and chemical reactions between inorganic and organic compounds can affect the hygroscopicity parameter κ (Petters and Kreidenweis, 2007). The measurements were conducted at the semi-rural Taunus Observatory/ Germany during summer 2012. An extensive suite of particle phase characterizing instrumentation was applied for the detailed composition analysis of submicron aerosol: We used online atmospheric pressure chemical ionization mass spectrometry (APCI-MS) (Vogel et al., 2013), aerosol mass spectrometry (AMS), and filter sampling for laboratory based analysis using ultrahigh performance liquid chromatography coupled to electrospray ionization ultrahigh resolution (OrbitrapTM) mass spectrometry (UHPLC/ESI-UHRMS). The AMS allows quantification of total organics, sulfate and nitrate, whereas the APCI-MS can identify single organic species (organic acids, organosulfates, nitrooxy-organosulfates), both at a high measurement frequencies (< 1 minute). The UHPLC/ESI-UHRMS analysis of filter samples provides vital information helping to understand the complex online spectra of the APCI-MS by the unambiguous determination of the elemental composition of different organic compounds. Furthermore, we used a MARGA (Monitor for Aerosols and Gases in Ambient Air) to measure the concentration of purely inorganic sulfate in PM10. Finally a CCN counter coupled to a differential mobility analyser (DMA) and to a condensation particle counter (CPC) was used to measure size-resolved CCN efficiency spectra and to derive the hygroscopicity parameter κ. We determined the κ-value of the ambient aerosol from size resolved chemical composition measurements by the AMS and compared it to the measured values of the CCN efficiency spectra. The relative evolution of the aerosol aging was determined by measuring the ratio of two biogenic acids: the aging product 1,2,3-methyl-butane-tricarboxylic acid (MBTCA) and the first generation oxidation product pinic acid by the online APCI-MS. The occurrence of organosulfates and nitrooxy-organosulfates was observed by the ultrahigh resolution MS analysis and the online APCI-MS. Comparison of the total sulfate concentration measured by the AMS with the sulfate measurements by the MARGA allowed for the determination of the fraction of sulfate which is bonded to organic molecules. We observed that photochemical aging and the formation of (hydrophobic) nitrooxy-organosulfates is responsible for the observed bias between the predicted and measured κ-value.
    • ClNO2 and nitrate formation via N2O5 uptake to particles: Derivation of N2O5 uptake coefficients from ambient datasets

      Phillips, Gavin J.; Thieser, Jim; Tang, Mingjin; Sobanski, Nicolas; Fachinger, Johannes; Drewnick, Frank; Lelieveld, Jos; Crowley, John N.; Max Planck Institute for Chemistry; University of Chester (Copernicus Publications, 2015-02-25)
      We present estimates of the uptake coefficient of N2O5 using ambient measurements of the trace gases N2O5 and ClNO2 and particle composition and surface area at the Kleiner Feldberg observatory, near Frankfurt, SW Germany, during the PARADE campaign (summer 2011). Three methods used to extract gamma(N2O5) from the datasets were found to be in reasonable agreement, generating values between 0.001 and 0.4. Gamma (N2O5) displayed a significant dependence on relative humidity (RH), the largest values obtained, as expected, at high RH. No significant dependence of gamma(N2O5) on particle organic content or sulphate-to-organic ratio was observed. The variability in gamma(N2O5) is however large, indicating that humidity is not the sole factor determining the uptake coefficient. There is also an indication that the yield of ClNO2 with respect to N2O5 uptake is larger with lower concentrations of PM1 total organics. Our results will be compared to existing uptake coefficients from laboratory studies and those derived from field observations.
    • Estimating N2O5 uptake coefficients using ambient measurements of NO3, N2O5, ClNO2 and particle-phase nitrate

      Phillips, Gavin J.; Thieser, Jim; Tang, Mingjin; Sobanski, Nicolas; Schuster, Gerhard; Fachinger, Johannes; Drewnick, Frank; Borrmann, Stephan; Bingemer, Heinz; Lelieveld, Jos; et al. (Copernicus Publications, 2016-08-03)
      We present an estimation of the uptake coefficient (γ) and yield of nitryl chloride (ClNO2) (f) for the heterogeneous processing of dinitrogen pentoxide (N2O5) using simultaneous measurements of particle and trace gas composition at a semi-rural, non-coastal, mountain site in the summer of 2011. The yield of ClNO2 varied between (0.035 ± 0.027) and (1.38 ± 0.60) with a campaign average of (0.49 ± 0.35). The large variability in f reflects the highly variable chloride content of particles at the site. Uptake coefficients were also highly variable with minimum, maximum and average γ values of 0.004, 0.11 and 0.028 ± 0.029, respectively, with no significant correlation with particle composition, but a weak dependence on relative humidity. The uptake coefficients obtained are compared to existing parameterisations based on laboratory datasets and with other values obtained by analysis of field data.
    • HOx cycling during the Cyprus Photochemistry Experiment

      Mallik, Chinmay; Harder, Hartwig; Tomsche, Laura; Novelli, Anna; Martinez, Monica; Meusel, Hannah; Su, Hang; Kessel, Stephan; Bourtsoukidis, Efstratios; Sauvage, Carina; et al. (Asia Oceania Geosciences Society, 2016-08-31)
      Abstract from attached
    • Identifying Criegee intermediates as potential oxidants in the troposphere

      Novelli, Anna; Hens, Korbinian; Tatum-Ernest, Cheryl; Martinez, Monica; Noelscher, Anke C.; Sinha, Vinayak; Paasonen, Pauli; Petaja, Tuukka; Sipila, Mikko; Elste, Thomas; et al. (American Geophysical Union, 2015-10)
      Criegee intermediates (CI) are formed during the ozonolysis of unsaturated compounds and have been intensively studied in the last few years due to their possible role as oxidants in the troposphere. Stabilised CI (SCI) are now known to react very rapidly, k(298 K) = 10-12 to 10-10 cm3 molecule-1 s-1, with a large number of trace gases (SO2, NO2, organic acids, water dimers). Still, it remains challenging to assess their effective oxidative capacity, as CI chemistry is complex, spans a large range of rate coefficients for different SCI conformers reacting with water dimers and trace gases, and in addition no reliable measurement technique able to detect ambient SCI concentrations is currently available. In this study, we examine the extensive dataset from the HUMPPA-COPEC 2010 and the HOPE 2012 field campaigns, aided by literature data, to estimate the abundance of SCI in the lower troposphere. The budget of SCI is analyzed using four different approaches: 1) based on an observed yet unexplained H2SO4 production; 2) from the measured concentrations of unsaturated volatile organic compounds (VOC); 3) from OH reactivity measurements; 4) from the unexplained production rate of OH. A SCI concentration range between 5 x 103 and 2 x 106 molecule cm-3 is calculated for the two environments. The central weighted estimate of the SCI concentration over the boreal forest of ~ 5 x 104 molecules cm-3 implies a significant impact on the conversion of SO2 into H2SO4. In addition, we present measurements obtained using our inlet pre-injector laser-induced fluorescence assay by gas expansion technique (IPI-LIF-FAGE) for the above-mentioned campaigns. A recent laboratory study performed with the same instrumental setup showed that the IPI-LIF-FAGE system is sensitive to the detection of the OH formed from unimolecular decomposition of SCI. Building on these measurements, the background OH (OHbg) measured during the two field campaigns is investigated in comparison with many other trace gases to assess if the observations in controlled conditions are transferable to ambient conditions.
    • Insights into HOx and ROx chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide

      Crowley, John N.; Pouvesle, Nicolas; Phillips, Gavin J.; Axinte, Raoul; Fischer, Horst; Petaja, Tuukka; Noelscher, Anke C.; Williams, Jonathan; Hens, Korbinian; Harder, Hartwig; et al. (European Geosciences Union, 2018-09-21)
      Unlike many oxidised atmospheric trace gases, which have numerous production pathways, peroxyacetic acid (PAA) and PAN are formed almost exclusively in gas-phase reactions involving the hydroperoxy radical (HO2), the acetyl peroxy radical (CH3C(O)O2) and NO2 and are not believed to be directly emitted in significant amounts by vegetation. As the self-reaction of HO2 is the main photochemical route to hydrogen peroxide (H2O2), simultaneous observation of PAA, PAN and H2O2 can provide insight into the HO2 budget. We present an analysis of observations taken during a summertime campaign in a boreal forest that, in addition to natural conditions, was temporarily impacted by two biomass-burning plumes. The observations were analysed using an expression based on a steady-state assumption using relative PAA-to-PAN mixing ratios to derive HO2 concentrations. The steady-state approach generated HO2 concentrations that were generally in reasonable agreement with measurements but sometimes overestimated those observed by factors of 2 or more. We also used a chemically simple, constrained box model to analyse the formation and reaction of radicals that define the observed mixing ratios of PAA and H2O2. After nudging the simulation towards observations by adding extra, photochemical sources of HO2 and CH3C(O)O2, the box model replicated the observations of PAA, H2O2, ROOH and OH throughout the campaign, including the biomass-burning-influenced episodes during which significantly higher levels of many oxidized trace gases were observed. A dominant fraction of CH3O2 radical generation was found to arise via reactions of the CH3C(O)O2 radical. The model indicates that organic peroxy radicals were present at night in high concentrations that sometimes exceeded those predicted for daytime, and initially divergent measured and modelled HO2 concentrations and daily concentration profiles are reconciled when organic peroxy radicals are detected (as HO2) at an efficiency of 35%. Organic peroxy radicals are found to play an important role in the recycling of OH radicals subsequent to their loss via reactions with volatile organic compounds.
    • A two-channel, Thermal Dissociation Cavity-Ringdown Spectrometer for the detection of ambient NO2, RO2NO2 and RONO2

      Thieser, Jim; Schuster, Gerhard; Phillips, Gavin J.; Reiffs, Andreas; Parchatka, Uwe; Poehler, D.; Lelieveld, Jos; Crowley, John N.; Schuladen, Jan; Max-Planck Institut fur Chemie ; University of Heidelberg ; University of Chester (Copernicus Publications, 2016-02-17)
      We describe a thermal dissociation cavity ring-down spectrometer (TD-CRDS) for measurement of ambient NO2, total peroxy nitrates (ΣPNs) and total alkyl nitrates (ΣANs). The spectrometer has two separate cavities operating at  ∼  405.2 and 408.5 nm. One cavity (reference) samples NO2 continuously from an inlet at ambient temperature, the other samples sequentially from an inlet at 473 K in which PNs are converted to NO2 or from an inlet at 723 K in which both PNs and ANs are converted to NO2, difference signals being used to derive mixing ratios of ΣPNs and ΣANs. We describe an extensive set of laboratory experiments and numerical simulations to characterise the fate of organic radicals in the hot inlets and cavity and derive correction factors to account for the bias resulting from the interaction of peroxy radicals with ambient NO and NO2. Finally, we present the first measurements and comparison with other instruments during a field campaign, outline the limitations of the present instrument and provide an outlook for future improvements.
    • Volatile organic compounds (VOCs) in photochemically aged air from the Eastern and Western Mediterranean

      Derstroff, Bettina; Stoenner, Christof; Kluepfel, Thomas; Sauvage, Carina; Crowley, John N.; Phillips, Gavin J.; Parchatka, Uwe; Lelieveld, Jos; Williams, Jonathan; Max Planck Institute for Chemistry; University of Chester (Copernicus Publications, 2015-02-25)
      In summer 2014 a comprehensively instrumented measurement campaign (CYPHEX) was conducted in northwest Cyprus in order to investigate atmospheric oxidation chemistry in the Mediterranean region. The site was periodically influenced by the northerly Etesian winds advecting air from Eastern Europe (Turkey and Greece) and from westerly winds bringing more photochemically processed emissions from Western Europe (Spain and France). In this study the data from a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) are analyzed. Generally, oxidized volatile organic compounds (OVOCs) such as methanol and acetone were measured in high mixing ratios (max. 9.5 ppb, min. 1.3 ppb, average 3.2 ppb for methanol, max. 7.9 ppb, min. 1.3 ppb, average 2.4 ppb for acetone ) while precursors like propane showed low values (max. 500 ppt). This demonstrates that the air measured was oxidized to a high degree over the Mediterranean Sea. Low values of acetonitrile throughout the campaign indicated no significant influence of biomass burning on the data. Temporal variations in VOC mixing ratios and precursor/product ratios over the campaign can be explained by using the HYSPLIT backward trajectory model which delineated air masses originating from Eastern and Western Europe. Diel variations of reactive VOCs such as isoprene and terpenes were also observed at the site. A sharp increase in isoprene and monoterpenes at circa 9:00 local time indicated that the 600 m hilltop site was influenced by ascending boundary layer air at this time. In this study, particular emphasis is placed on acetic (ethanoic) acid measured by PTR- TOF-MS and calibrated by a permeation source. Acetic acid is an atmospheric oxidation product of multiple volatile organic compounds, emitted directly from vegetation, and found in abundance in the Mediterranean region (max. 2.7 ppb, min. 0.2 ppb, average 0.8 ppb). Acetic acid contributes to the acidity of precipitation in remote areas, can be incorporated into aerosols by adsorption on the surface and thereby alter the activity due to their high polarity. Correlations of acetic acid with peracetic acid, humidity and ozone have been investigated in order to better understand the sources influencing acetic acid at the site and to assess its potential as a marker for Criegee radical chemistry.