• Computational simulation of the damage response for machining long fibre reinforced plastic (LFRP) composite parts: A review

      Wang, Xiaonan; Wang, Fuji; Gu, Tianyu; Jia, Zhenyuan; Shi, Yu; Dalian University of Technology; University of Chester
      Long fibre reinforced plastics (LFRPs) possess excellent mechanical properties and are widely used in the aerospace, transportation and energy sectors. However, their anisotropic and inhomogeneous characteristics as well as their low thermal conductivity and specific heat capacity make them prone to subsurface damage, delamination and thermal damage during the machining process, which seriously reduces the bearing capacity and shortens the service life of the components. To improve the processing quality of composites, finite element (FE) models were developed to investigate the material removal mechanism and to analyse the influence of the processing parameters on the damage. A review of current studies on composite processing modelling could significantly help researchers to understand failure initiation and development during machining and thus inspire scholars to develop new models with high prediction accuracy and computational efficiency as well as a wide range of applications. To this aim, this review paper summarises the development of LFRP machining simulations reported in the literature and the factors that can be considered in model improvement. Specifically, the existing numerical models that simulate the mechanical and thermal behaviours of LFRPs and LFRP-metal stacks in orthogonal cutting, drilling and milling are analysed. The material models used to characterise the constituent phases of the LFRP parts are reviewed. The mechanism of material removal and the damage responses during the machining of LFRP laminates under different tool geometries and processing parameters are discussed. In addition, novel and objective evaluations that concern the current simulation studies are conducted to summarise their advantages. Aspects that could be improved are further detailed, to provide suggestions for future research relating to the simulation of LFRP machining.
    • Interface Cohesive Elements to Model Matrix Crack Evolution in Composite Laminates

      Shi, Yu; Pinna, Christophe; Soutis, Constantinos; University of Chester; University of Sheffield; University of Manchester (Springer, 2013-10-02)
      In this paper, the transverse matrix (resin) cracking developed in multidirectional composite laminates loaded in tension was numerically investigated by a finite element (FE) model implemented in the commercially available software Abaqus/Explicit 6.10. A theoretical solution using the equivalent constraint model (ECM) of the damaged laminate developed by Soutis et al. was employed to describe matrix cracking evolution and compared to the proposed numerical approach. In the numerical model, interface cohesive elements were inserted between neighbouring finite elements that run parallel to fibre orientation in each lamina to simulate matrix cracking with the assumption of equally spaced cracks (based on experimental measurements and observations). The stress based traction-separation law was introduced to simulate initiation of matrix cracking and propagation under mixed-mode loading. The numerically predicted crack density was found to depend on the mesh size of the model and the material fracture parameters defined for the cohesive elements. Numerical predictions of matrix crack density as a function of applied stress are in a good agreement to experimentally measured and theoretically (ECM) obtained values, but some further refinement will be required in near future work.