• 2D Molybdenum Disulphide (2D-MoS2) Modified Electrodes Explored Towards the Oxygen Reduction Reaction

      Rowley-Neale, Samuel J.; Fearn, Jamie; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.; Manchester Metropolitan University (Rowley-Neale, Fearn, Brownson, Banks); University of Chester (Smith); Central South University Changsha (Ji) (Royal Society of Chemistry, 2016-07-11)
      Two-dimensional molybdenum disulphide nanosheets (2D-MoS2)have proven to be an effective lectro- catalyst, with particular attention being focused on their use towards increasing the efficiency of the reac-tions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based elec-trodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Conse-quently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the under-lying/supporting carbon materials that electrically wire the 2D-MoS2and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca.+0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm−2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR
    • 2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction

      Rowley-Neale, Samuel J.; Brownson, Dale A. C.; Smith, Graham C.; Satwell, David A. G.; Kelly, Peter J.; Banks, Craig E.; Faculty of Science and Engineering, Manchester Metropolitain University, Manchester M 5GD, UK (Rowley-Neale, Brownson, Satwell, Kelly & Banks); Department of Natural Sciences, University of Chester, Thornton Science Park, Chester CH2 4NU (Smith) (Royal Society of Chemistry, 2015-10-06)
      We explore the use of two-dimensional (2D) MoS2 nanosheets as an electro-catalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electro-catalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underling support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrodes individual electron transfer kinetics/properties. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER.
    • Anodic stripping voltammetry with graphite felt electrodes for the trace analysis of silver

      Davies, Trevor J.; University of Chester (Royal Society of Chemistry, 2016-05-31)
      Graphite felt (GF) is a mass produced porous carbon electrode material commonly used in redox flow batteries. Previous studies have suggested GF may have valuable applications in electroanalysis as a low cost disposable carbon electrode material, although most GF sensors have used flow cell arrangements. In this work, an elegant wetting technique is employed that allows GF electrodes to be used in quiescent solution to detect trace levels of silver in water via anodic stripping voltammetry. GF electrodes display good repeatability and a limit of detection of 25 nM of Ag+ in 0.1 M HNO3, with a linear range spanning two orders of magnitude. This compares to a value of around 140 nM when using conventional carbon electrodes. Combined with their low cost and disposable nature, the results suggest GF electrodes can make a valuable contribution to electroanalysis.
    • A deterministic oscillatory model of microtubule growth and shrinkage for differential actions of short chain fatty acids

      Kilner, Josephine; Corfe, Bernard M.; Mc Auley, Mark T.; Wilkinson, Stephen J.; University of Sheffield; University of Chester (Royal Society of Chemistry, 2015-11-09)
      Short chain fatty acids (SCFA), principally acetate, propionate, butyrate and valerate, are produced in pharmacologically relevant concentrations by the gut microbiome. Investigations indicate that they exert beneficial effects on colon epithelia. There is increasing interest in whether different SCFAs have distinct functions which may be exploited for prevention or treatment of colonic diseases including colorectal cancer (CRC), inflammatory bowel disease and obesity. Based on experimental evidence, we hypothe-sised that odd-chain SCFAs may possess anti-mitotic capabilities in colon cancer cells by disrupting microtubule (MT) structural integrity via dysregulation of b-tubulin isotypes. MT dynamic instability is an essential characteristic of MT cellular activity. We report a minimal deterministic model that takes a novel approach to explore the hypothesised pathway by triggering spontaneous oscillations to represent MT dynamic behaviour. The dynamicity parameters in silico were compared to those reported in vitro.Simulations of untreated and butyrate (even-chain length) treated cells reflected MT behaviour in interphase or untreated control cells. The propionate and valerate (odd-chain length) simulations displayed increased catastrophe frequencies and longer periods of MT-fibre shrinkage. Their enhanced dynamicity wasdissimilar to that observed in mitotic cells, but parallel to that induced by MT-destabilisation treatments.Antimicrotubule drugs act through upward or downward modulation of MT dynamic instability. Our computational modelling suggests that metabolic engineering of the microbiome may facilitate managing CRC risk by predicting outcomes of SCFA treatments in combination with AMDs
    • Diamond-coated ‘black silicon’ as a promising material for high-surface-area electrochemical electrodes and antibacterial surfaces

      May, Paul W.; Clegg, Michael; Silva, T.; Zanin, H.; Fatibello-Filho, O.; Celorrio, V.; Fermin, David; Welch, Colin C.; Hazell, Gavin; Fisher, Leanne E.; et al. (Royal Society of Chemistry, 2016-08-08)
      This report describes a method to fabricate high-surface-area boron-doped diamond (BDD) electrodes using so-called ‘black silicon’ (bSi) as a substrate. This is a synthetic nanostructured material that contains high-aspect-ratio nano-protrusions, such as spikes or needles, on the Si surface produced via plasma etching. We now show that coating a bSi surface composed of 15-μm-high needles conformably with BDD produces a robust electrochemical electrode with high sensitivity and high electroactive area. A clinically relevant demonstration of the efficacy of these electrodes is shown by measuring their sensitivity for detection of dopamine (DA) in the presence of an excess of uric acid (UA). Finally, the nanostructured surface of bSi has recently been found to generate a mechanical bactericidal effect, killing both Gram-negative and Gram-positive bacteria at high rates. We will show that BDD-coated bSi also acts as an effective antibacterial surface, with the added advantage that being diamond-coated it is far more robust and less likely to become damaged than Si.
    • Efficient solar cells are more stable: The impact of polymer molecular weight on performance of organic photovoltaics

      Ding, Ziqian; Kettle, Jeff; Horie, Masaki; Chang, Shu-Wi; Smith, Graham C.; Shames, Alexander I.; Katz, Eugene A.; University of Bangor (Ding, Kettle), National Tsing Hua Univeristy Taiwan (Horie, Chang), University of Chester (Smith), Ben Gurion University of the Negev (Shames, Katz) (Royal Society of Chemistry, 2016-04-14)
      The principle remaining challenge in the research area of organic photovoltaic (OPV) materials is to develop solar cells that combine high efficiency, stability and reproducibility. Here, we demonstrate an experimental strategy which has successfully addressed this challenge. We produced a number of samples of the highly efficient PTB7 polymer with various molecular weights (Mn 40–220k). OPV cells fabricated with this polymer demonstrated significant improvement of the cell efficiency (by 90% relative) and lifetime (by 300% relative) with the Mn increase. We attribute these effects to the lower density of recombination centers (persistent radical defects revealed by EPR spectroscopy) and better photoactive layer morphology in the samples with higher Mn. Relevance of the observed correlation between the OPV efficiency and stability is discussed.
    • Electromagnetic wave absorption properties of ternary poly (vinylidene fluoride)/magnetite nanocomposites with carbon nanotubes and graphene

      Tsonos, Christos; Soin, Navneet; Tomara, Georgia N.; Yang, Bin; Psarras, Georgios C.; Kanapitsas, Athanasios; Siores, Elias; University of Chester (Royal Society of Chemistry, 2015-12-21)
      Ternary nanocomposite systems of poly(vinylidene fluoride)/magnetite/carbon nanotube (PVDF/Fe3O4/CNT) and poly(vinylidene fluoride)/magnetite/graphene (PVDF/Fe3O4/GN), were prepared using high shear twin screw compounding followed by compression moulding. The electromagnetic (EM) microwave absorption properties of the nanocomposites were investigated in the frequency range of 3–10 GHz. PVDF/Fe3O4/CNT samples with the thickness d = 0.7 mm present a minimum reflection loss (RL) of −28.8 dB at 5.6 GHz, while all the RL values in the measurement frequency range 3–10 GHz are lower than −10 dB. PVDF/Fe3O4/GN with a thickness of 0.9 mm, presents a minimum RL of −22.6 dB at 5.4 GHz, while all the RL values in the measurement frequency range 3–10 GHz are lower than −10 dB as well. The excellent microwave absorption properties of both nanocomposites, in terms of minimum RL value and broad absorption bandwidth, are mainly due to the enhanced magnetic losses. The results indicate that the ternary nanocomposites studied here, can be used as an attractive candidate for EM absorption materials in diverse fields of various technological applications, not only in the frequency range 3–10 GHz, but also at frequencies <3 GHz for PVDF/Fe3O4/CNT and >10 GHz for PVDF/Fe3O4/GN with a realistic thickness of close to 1 mm.
    • High performing AgNW transparent conducting electrodes with a sheet resistance of 2.5 Ω Sq−1 based upon a roll-to-roll compatible post-processing technique

      Kumar, Dinesh; Stoichkov, Vasil; Brousseau, Emmanuel; Smith, Graham C.; Kettle, Jeff; Bangor University; University of Chester; Cardiff University (Royal Society of Chemistry, 2019-02-12)
      The report of transparent and conducting silver nanowires (AgNWs) that produce remarkable electrical performance, surface planarity and environmental stability is given. This research presents an innovative process that relies on three sequential steps, which are roll-to-roll (R2R) compatible; thermal embossing, infrared sintering and plasma treatment. This process leads to the demonstration of a conductive film with a sheet resistance of 2.5Ω/sq and high transmittance, thus demonstrating the highest reported figure-of-merit in AgNWs to date (FoM = 933). A further benefit of the process is that the surface roughness is substantially reduced compared to traditional AgNW processing techniques. Finally, consideration of the long-term stability is given by developing an accelerated life test process that simultaneously stresses the applied bias and temperature. Regression line fitting shows that a ∼150-times improvement in stability is achieved at ‘normal operational conditions’ when compared to traditionally deposited AgNW films. X-ray photoelectron spectroscopy (XPS) is used to understand the root cause of the improvement in long-term stability, which is related to reduced chemcial changes in the AgNWs.
    • Mass-producible 2D-MoSe2 bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction

      Rowley-Neale, Samuel J.; Foster, Christopher W.; Smith, Graham C.; Brownson, Dale A. C.; Banks, Craig E.; Manchester Metropolitan University; University of Chester (Royal Society of Chemistry, 2017-01-25)
      We demonstrate a facile, low cost and reproducible methodology for the production of electrocatalytic 2D-MoSe2 incorporated/bulk modified screen-printed electrodes (MoSe2-SPEs). The MoSe2-SPEs outperform traditional carbon based electrodes, in terms of their electrochemical activity, towards the Hydrogen Evolution Reaction (HER). The electrocatalytic behaviour towards the HER of the 2D-MoSe2 within the fabricated electrodes is found to be mass dependent, with an optimal mass ratio of 10% 2D-MoSe2 to 90% carbon ink. MoSe2-SPEs with this optimised ratio exhibit a HER onset, Tafel value and a turn over frequency of ca. −460 mV (vs. SCE), 47 mV dec−1 and 1.48 respectively. These values far exceed the HER performance of graphite (unmodified) SPEs, that exhibit a greater electronegative HER onset and Tafel value of ca. −880 mV and 120 mV dec−1 respectively. It is clear that impregnation of 2D-MoSe2 into the MoSe2-SPEs bulk ink/structure significantly increases the performance of SPEs with respect to their electrocatalytic activity towards the HER. When compared to SPEs that have been modified via a drop-casting technique, the fabricated MoSe2-SPEs exhibit excellent cycling stability. After 1000 repeat scans, a 10% modified MoSe2-SPE displayed no change in its HER onset potential of −450 mV (vs. SCE) and an increase of 31.6% in achievable current density. Conversely, a SPE modified via drop-casting with 400 mg cm−2 of 2D-MoSe2 maintained its HER onset potential of −480 mV (vs. SCE), however exhibited a 27.4% decrease in its achievable current density after 1000 scans. In addition to the clear performance benefits, the production of MoSe2-SPEs mitigates the need to post hoc modify an electrode via the drop-casting technique. We anticipate that this facile production method will serve as a powerful tool for future studies seeking to utilise 2D materials in order to mass-produce SPEs/surfaces with unique electrochemical properties whilst providing substantial stability improvements over the traditionally utilised technique of drop-casting.
    • A mathematical model of microbial folate biosynthesis and utilisation: implications for antifolate development

      Salcedo-Sora, J. Enrique; Mc Auley, Mark T.; Liverpool Hope University, University of Chester (Royal Society of Chemistry, 2016-01-15)
      The metabolic biochemistry of folate biosynthesis and utilisation has evolved into a complex network of reactions. Although this complexity represents challenges to the field of folate research it has also provided a renewed source for antimetabolite targets. A range of improved folate chemotherapy continues to be developed and applied particularly to cancer and chronic inflammatory diseases. However, new or better antifolates against infectious diseases remain much more elusive. In this paper we describe the assembly of a generic deterministic mathematical model of microbial folate metabolism. Our aim is to explore how a mathematical model could be used to explore the dynamics of this inherently complex set of biochemical reactions. Using the model it was found that: (1) a particular small set of folate intermediates are overrepresented, (2) inhibitory profiles can be quantified by the level of key folate products, (3) using the model to scan for the most effective combinatorial inhibitions of folate enzymes we identified specific targets which could complement current antifolates, and (4) the model substantiates the case for a substrate cycle in the folinic acid biosynthesis reaction. Our model is coded in the systems biology markup language and has been deposited in the BioModels Database (MODEL1511020000), this makes it accessible to the community as a whole.
    • Multiscale Understanding of Electric Polarization in Poly(vinylidene fluoride)-Based Ferroelectric Polymers

      Yang, Bin; Meng, Nan; Xintong, Ren; Zhu, Xiaojing; Wu, Jiyue; Gao, Feng; Zhang, Han; Liao, Yaozu; Bilotti, Emiliano; Reece, Michael; et al.
      Poly(vinylidene fluoride) (PVDF) and PVDF-based copolymers with trifluoroethylene (PVDF-TrFE) have attracted considerable academic and industrial interest due to their ferroelectric properties, which are only presented in very few polymers. However, the underlying fundamentals of molecular ordering and induced polarizations are complex and not fully understood. Herein, PVDF, PVDF-TrFE and their blends, prepared using melt extrusion and hot pressing, have been selected to obtain controlled case studies with well-defined chain ordering and microstructures. Impedance analysis and terahertz time-domain spectroscopy are exploited to investigate electric polarization in PVDF-based polymers at different length scales. The extruded ferroelectric films show in-plane chain orientation and higher domain wall density compared to hot pressed films with randomly-distributed polymer chains, which favors the polarization at low frequencies (Hz to MHz), as concluded from the higher dielectric constants and more prominent high electric field polarization switching features. However, the domain walls cannot respond at high frequencies, which leads to lower dielectric constants in the extruded films at THz frequencies.
    • The physicochemical investigation of hydrothermally reduced textile waste and application within carbon-based electrodes

      Randviir, Edward P.; Kanou, Omar; Liauw, Christopher M.; Miller, Gary; Andrews, Hayley; Smith, Graham C.; Manchester Metropolitan University; University of Chester (Royal Society of Chemistry, 2019-04-10)
      Textile waste is on the rise due to the expanding global population and the fast fashion market. Large volumes of textile waste are increasing the need for new methods for recycling mixed fabric materials. This paper employs a hydrothermal conversion route for a polyester/cotton mix in phosphoric acid to generate carbon materials (hydrochars) for electrochemical applications. A combination of characterization techniques revealed the reaction products were largely comprised of two major components. The first is a granular material with a surface C : O ratio of 2 : 1 interspersed with phosphorous and titanium proved using energy dispersive X-ray spectroscopy, and the other is a crystalline material with a surface C : O ratio of 3 : 2 containing no phosphorous or titanium. The latter material was found via X-ray diffraction and differential scanning calorimetry to be terephthalic acid. Electrochemical experiments conducted using the hydrochar as a carbon paste electrode demonstrates an increase in current response compared to carbon reference materials. The improved current responses, intrinsically related to the surface area of the material, could be beneficial for electrochemical sensor applications, meaning that this route holds promise for the development of a cheap recycled carbon material, using straightforward methods and simple laboratory reagents.
    • Probing NaCl hydrate formation from aqueous solutions by Terahertz Time-Domain Spectroscopy

      Yang, Bin; University of Chester
      The cooling-induced formation of hydrate in aqueous NaCl solutions was probed using terahertz time-domain spectroscopy (THz-TDS). It was found that the NaCl hydrate formation is accompanied with emergence of four new absorption peaks at 1.60, 2.43, 3.34 and 3.78 THz. Combining the X-ray diffraction measurement with the solid-state based density functional theory (DFT) calculations, we assign the observed terahertz absorption peaks to the vibrational modes of the formed NaCl⋅2H2O hydrate during cooling. This work dedicates THz-TDS based analysis great potential in studying ionic hydrate and the newly revealed collective vibrational modes could be the sensitive indicators to achieve quantitative analysis in phase transitions and lattice dynamics.
    • A Silanol-Functionalized Polyoxometalate with Excellent Electron Transfer Mediating Behavior to ZnO and TiO 2 Cathode Interlayers for Highly Efficient and Extremely Stable Polymer Solar Cells

      Tountas, Marinos; Topal, Yasemin; Verykios, Apostolos; Soultati, Anastasia; Kaltzoglou, Andreas; Papadopoulos, Theodoros A.; Auras, Florian; Seintis, Kostas; Fakis, Mihalis; Palilis, Leonidas C.; et al. (Royal Society of Chemistry, 2017-12-21)
      Combining high efficiency and long lifetime under ambient conditions still poses a major challenge towards commercialization of polymer solar cells. Here we report a facile strategy that can simultaneously enhance the efficiency and temporal stability of inverted photovoltaic architectures. Inclusion of a silanol-functionalized organic–inorganic hybrid polyoxometalate derived from a PW9O34 lacunary phosphotungstate anion, namely (nBu4N)3[PW9O34(tBuSiOH)3], significantly increases the effectiveness of the electron collecting interface, which consists of a metal oxide such as titanium dioxide or zinc oxide, and leads to a high efficiency of 6.51% for single-junction structures based on poly(3-hexylthiophene):indene-C60 bisadduct (P3HT:IC60BA) blends. The above favourable outcome stems from a large decrease in the work function, an effective surface passivation and a decrease in the surface energy of metal oxides which synergistically result in the outstanding electron transfer mediating capability of the functionalized polyoxometalate. In addition, the insertion of a silanol-functionalized polyoxometalate layer significantly enhances the ambient stability of unencapsulated devices which retain nearly 90% of their original efficiencies (T90) after 1000 hours.
    • Structure and dielectric properties of double A-site doped bismuth sodium titanate relaxor ferroelectrics for high power energy storage applications

      Yang, Bin; Zhang, Hangfeng; Fortes, Dominic; Yan, Haixue; Abrahams, Isaac; University of Chester; Queen Mary University of London; Rutherford Appleton Laboratory
      The structural and dielectric properties of barium/strontium substituted Bi0.5Na0.5TiO3 were examined in compositions of general formula (Ba0.4Sr0.6TiO3)x(Bi0.5Na0.5TiO3)1-x. An average classic cubic perovskite structure is maintained from x = 0.5 to 1.0. The temperature dependence of dielectric properties of studied compositions shows relaxor-ferroelectric behaviour attributed to the existence of polar nano-regions. Ferroelectric measurements under variable temperature demonstrated two transitions from normal ferroelectric to relaxor-ferroelectric and relaxor-ferroelectric to paraelectric, at the dipole freezing temperature, Tf, and temperature of maximum permittivity, Tm, respectively. The obtained value of Tf coincides with the onset of linear thermal expansion of the cubic unit cell parameter obtained from high resolution powder neutron diffraction data. Careful analysis of the neutron diffraction data revealed no significant change in the average cubic structure from -263 to 150 C. However, changes in the Gaussian variance component of the neutron peak shape, reveal three distinct regions with transitions at about -100 and 100 C corresponding to the beginning and end of the dielectric dispersion seen in the permittivity and loss spectra. This variation in the Gaussian variance parameter is attributed to the activity of the polar nano-regions. The composition (Ba0.4Sr0.6)0.5(Bi0.5Na0.5)0.5TiO3 was found to exhibit the maximum recoverable energy storage density, with a value of 1.618 J cm-3 and 76.9% storage efficiency at a field of 17 kV mm-1.
    • Studies of black silicon and black diamond as materials for antibacterial surfaces

      Hazell, Gavin; May, Paul W.; Taylor, Paul W.; Nobbs, Angela H.; Su, Bo; University of Bristol; Oxford Instruments Plasma Technology (Royal Society of Chemistry, 2018-03-27)
      ‘Black silicon’ (bSi) samples with surfaces covered in nanoneedles of varying length, areal density and sharpness, have been fabricated using a plasma etching process. These nanostructures were then coated with a conformal uniform layer of diamond using hot filament chemical vapour deposition to produce ‘black diamond’ (bD) surfaces. The effectiveness of these bSi and bD surfaces in killing Gram-negative (E. coli) and Gram-positive (S. gordonii) bacteria was investigated by culturing the bacteria on the surfaces for a set time and then measuring the live-to-dead ratio. All the nanostructured surfaces killed E. coli at a significantly higher rate than the respective flat Si or diamond control samples. The length of the needles was found to be less important than their separation, i.e. areal density. This is consistent with a model for mechanical bacteria death based on the stretching and disruption of the cell membrane, enhanced by the cells motility on the surfaces. In contrast, S. gordonii were unaffected by the nanostructured surfaces, possibly due to their smaller size, thicker cell membrane and/or their lack of motility.
    • Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells

      Polydorou, Ermioni; Zeniou, Angelos; Tsikritzis, Dimitris; Soultati, Anastasia; Sakellis, Ilias; Gardelis, Spyros; Papadopoulos, Theodoros A.; Briscoe, Joe; Palilis, Leonidas C.; Kennou, Stella; et al. (Royal Society of Chemistry, 2016-06-24)
      Zinc oxide (ZnO) is an important material for polymer solar cells (PSCs) where the characteristics of the interface can dominate both the efficiency and lifetime of the device. In this work we study the effect of fluorine (SF6) plasma surface treatment of ZnO films on the performance of PSCs with an inverted structure. The interaction between fluorine species present in the SF6 plasma and the ZnO surface is also investigated in detail. We provide fundamental insights into the passivation effect of fluorine by analyzing our experimental results and theoretical calculations and we propose a mechanism according to which a fluorine atom substitutes an oxygen atom or occupies an oxygen vacancy site eliminating an electron trap while it may also attract hydrogen atoms thus favoring hydrogen doping. These multiple fluorine roles can reduce both the recombination losses and the electron extraction barrier at the ZnO/fullerene interface improving the selectivity of the cathode contact. Therefore, the fabricated devices using the fluorine plasma treated ZnO show high efficiency and stable characteristics, irrespective of the donor : acceptor combinations in the photoactive blend. Inverted polymer solar cells, consisting of the P3HT:PC71BM blend, exhibited increased lifetime and high power conversion efficiency (PCE) of 4.6%, while the ones with the PCDTBT:PC71BM blend exhibited a PCE of 6.9%. Our champion devices with the PTB7:PC71BM blends reached a high PCE of 8.0% and simultaneously showed exceptional environmental stability when using the fluorine passivated ZnO cathode interlayers.
    • Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications

      Khan, Aamar F.; Down, Michael P.; Smith, Graham C.; Foster, Christopher W.; Banks, Craig E.; University of Chester; Manchester Metropolitan University (Royal Society of Chemistry, 2017-02-02)
      Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN) nanosheets are fabricated using the surfactant sodium cholate in aqueous media and are explored towards the electrochemical reduction of oxygen (oxygen reduction reaction) within acidic media for the first time. Large quantifiable voltammetric signatures are observed at significantly reduced potentials compared to traditional graphitic-based electrodes indicating 2D-hBN's possible electrocatalytic activity towards the oxygen reduction reaction, therefore having the potential as a useful electrode platform within fuel cell technology. We also demonstrate, for the first time, that surfactant-exfoliated 2D-hBN is an effective electrochemical supercapacitor material with a specific capacitance value of up to 1745 F g-1. A full analysis of the electrochemical properties of 2D-hBN is performed, including the application of a novel capacitive circuit applied to galvanostatic charge/discharge analysis, which provides an unambiguous analysis of the capacitance of the 2D-hBN. Furthermore, a diverse range of methods are introduced and utilised to calculate the specific capacitance, a substantially overlooked and misinterpreted parameter within the literature allowing standardisation in the academic literature to be achieved. In both examples, we demonstrate through control experiments in the form of surfactant modified graphite electrodes, sodium cholate is the major contributing factor to the aforementioned electrocatalytic and capacitive behaviour, which has yet to be reported.
    • Synthesis and Characterisation of a New Anion Exchangeable Layered Hydroxyiodide

      Southworth, Faye Y.; Wilson, Claire; Coles, Simon J.; Fogg, Andrew M.; University of Liverpool; University of Southampton (Royal Society of Chemistry, 2014-03-04)
      Lu4O(OH)9I·3H2O is a new member of the anion exchangeable lanthanide hydroxyanion family of materials which has been synthesised hydrothermally. Its structure comprises positively charged [Lu4O(OH)9(H2O)3]+ layers with exchangeable charge balancing iodide anions located in the interlayer gallery. It has been found to undergo facile anion exchange reactions with dicarboxylate anions such as succinate and terephthalate at room temperature but reacts less readily with disulfonate anions such as 1,5- and 2,6-naphthalenedisulfonate under the same conditions. At reaction temperatures above 200 °C the cationic inorganic framework Lu3O(OH)6I·2H2O forms instead of the layered phase.
    • Synthesis, characterisation and in-vitro cytotoxicity of mixed ligand Pt(II) oxadiazoline complexes with hexamethylenetetramine and 7-nitro-1,3,5-triazaadamantane.

      Sieste, Stefanie; Lifincev, Irina; Stein, Nina; Wagner, Gabriele; University of Ulm (Germany); University of Chester (UK) (Royal Society of Chemistry, 2017-08-21)
      Trans-platinum(II) oxadiazoline complexes with 7-nitro-1,3,5-triazaadamantane (NO2-TAA) or hexamethylenetetramine (hmta) ligands have been synthesised from trans-[PtCl2(PhCN)2] via cycloaddition of nitrones to one of the coordinated nitriles, followed by exchange of the other nitrile by NO2-TAA or hmta. Stoichiometric control allows for the selective synthesis of mono- and dinuclear complexes where 7-NO2TAA and hmta act as mono- and bidentate ligands, respectively. Precursors and the target complexes trans-[PtCl2(hmta)(oxadiazoline)], trans-[PtCl2(NO2-TAA)(oxadiazoline)] and trans-[{PtCl2(oxadiazoline)}2(hmta)] were characterised by elemental analysis, IR and multinuclear (1H, 13C, 195Pt) NMR spectroscopy. DFT (B3LYP/6-31G*/LANL08) and AIM calculations suggest a stronger bonding of hmta with the [PtCl2(oxadiazoline)] fragment, in agreement with the experimentally observed reactivity in the ligand exchange (hmta > 7-NO2TAA). Replacement of the nitrile by hmta is predicted more exothermic than that with 7-NO2-TAA, although the activation barriers are similar. Protonation of the non-coordinated N atoms is anticipated to weaken the Pt-N bond and lower the activation barrier for ligand exchange. This effect might help activate these compounds in a slightly acidic environment such as some tumour tissues. Ten of the new compounds were tested for their in vitro cytotoxicity in the human cancer cell lines HeLa and A549. Some of the mononuclear complexes are more potent than cisplatin, and their activity is still high in A549 where cisplatin shows little effect. The dinuclear complexes are inactive, presumably due to their lipophilicity and reduced solubility in water.