• Acclimation of Microalgae to Wastewater Environments Involves Increased Oxidative Stress Tolerance Activity

      Osundeko, Olumayowa; Dean, Andrew P.; Davies, Helena; Pittman, Jon K.; University of Chester (Oxford Academic, 2014-09-16)
      A wastewater environment can be particularly toxic to eukaryotic microalgae. Microalgae can adapt to these conditions but the specific mechanisms that allow strains to tolerate wastewater environments are unclear. Furthermore, it is unknown whether the ability to acclimate microalgae to tolerate wastewater is an innate or species-specific characteristic. Six different species of microalgae (Chlamydomonas debaryana, Chlorella luteoviridis, Chlorella vulgaris, Desmodesmus intermedius, Hindakia tetrachotoma, Parachlorella kessleri) that had never previously been exposed to wastewater conditions were acclimated over an eight week period in secondary-treated municipal wastewater. With the exception of C. debaryana, acclimation to wastewater resulted in significantly higher growth rate and biomass productivity. With the exception of C. vulgaris, total chlorophyll content was significantly increased in all acclimated strains, while all acclimated strains showed significantly increased photosynthetic activity. The ability of strains to acclimate was species-specific, with two species, C. luteoviridis and P. kessleri, able to acclimate more efficiently to the stress than C. debaryana and D. intermedius. Metabolic fingerprinting of the acclimated and non-acclimated microalgae using Fourier transform infrared spectroscopy was able to differentiate strains on the basis of metabolic responses to the stress. In particular, strains exhibiting greater stress response and altered accumulation of lipids and carbohydrates could be distinguished. The acclimation to wastewater tolerance was correlated with higher accumulation of carotenoid pigments and increased ascorbate peroxidase activity.
    • Galerkin finite element approximation of a stochastic semilinear fractional subdiffusion with fractionally integrated additive noise

      Yan, Yubin; Kang, Wenyan; Egwu, Bernard; Pani, Amiya; University of Chester, Lvliang University, P. R. China, Indian Institute of Technology Bombay
      A Galerkin finite element method is applied to approximate the solution of a semilinear stochastic space and time fractional subdiffusion problem with the Caputo fractional derivative of the order $ \alpha \in (0, 1)$, driven by fractionally integrated additive noise. After discussing the existence, uniqueness and regularity results, we approximate the noise with the piecewise constant function in time in order to obtain a regularized stochastic fractional subdiffusion problem. The regularized problem is then approximated by using the finite element method in spatial direction. The mean squared errors are proved based on the sharp estimates of the various Mittag-Leffler functions involved in the integrals. Numerical experiments are conducted to show that the numerical results are consistent with the theoretical findings.