• Composite Constructions of Self-Dual Codes from Group Rings and New Extremal Self-Dual Binary Codes of Length 68

      Dougherty, Steven; Gildea, Joe; Kaya, Abidin; Korban, Adrian; University of Scranton; University of Chester; Sampoerna University ; University of Chester (American Institute of Mathematical Sciences, 2019-11-30)
      We describe eight composite constructions from group rings where the orders of the groups are 4 and 8, which are then applied to find self-dual codes of length 16 over F4. These codes have binary images with parameters [32, 16, 8] or [32, 16, 6]. These are lifted to codes over F4 + uF4, to obtain codes with Gray images extremal self-dual binary codes of length 64. Finally, we use a building-up method over F2 + uF2 to obtain new extremal binary self-dual codes of length 68. We construct 11 new codes via the building-up method and 2 new codes by considering possible neighbors.
    • Constructing Self-Dual Codes from Group Rings and Reverse Circulant Matrices

      Gildea, Joe; Kaya, Abidin; Korban, Adrian; Yildiz, Bahattin; University of Chester; Sampoerna Academy; Northern Arizona University (American Institute of Mathematical Sciences, 2020-01-20)
      In this work, we describe a construction for self-dual codes in which we employ group rings and reverse circulant matrices. By applying the construction directly over different alphabets, and by employing the well known extension and neighbor methods we were able to obtain extremal binary self-dual codes of different lengths of which some have parameters that were not known in the literature before. In particular, we constructed three new codes of length 64, twenty-two new codes of length 68, twelve new codes of length 80 and four new codes of length 92.
    • New Self-Dual and Formally Self-Dual Codes from Group Ring Constructions

      Dougherty, Steven; Gildea, Joe; Kaya, Abidin; Yildiz, Bahattin; University of Scranton; University of Chester; Sampoerna Academy; University of Chester; Northern Arizona University (American Institute of Mathematical Sciences, 2019-08-31)
      In this work, we study construction methods for self-dual and formally self-dual codes from group rings, arising from the cyclic group, the dihedral group, the dicyclic group and the semi-dihedral group. Using these constructions over the rings $_F2 +uF_2$ and $F_4 + uF_4$, we obtain 9 new extremal binary self-dual codes of length 68 and 25 even formally self-dual codes with parameters [72,36,14].
    • New Self-Dual Codes of Length 68 from a 2 × 2 Block Matrix Construction and Group Rings

      Bortos, Maria; Gildea, Joe; Kaya, Abidin; Korban, Adrian; Tylyshchak, Alexander; Uzhgorod National University, University of Chester, Harmony School of Technology, University of Chester, Uzhgorod National University
      Many generator matrices for constructing extremal binary self-dual codes of different lengths have the form G = (In | A); where In is the n x n identity matrix and A is the n x n matrix fully determined by the first row. In this work, we define a generator matrix in which A is a block matrix, where the blocks come from group rings and also, A is not fully determined by the elements appearing in the first row. By applying our construction over F2 +uF2 and by employing the extension method for codes, we were able to construct new extremal binary self-dual codes of length 68. Additionally, by employing a generalised neighbour method to the codes obtained, we were able to con- struct many new binary self-dual [68,34,12]-codes with the rare parameters $\gamma = 7$; $8$ and $9$ in $W_{68,2}$: In particular, we find 92 new binary self-dual [68,34,12]-codes.
    • On the quenching behaviour of a semilinear wave equation modelling MEMS technology

      Kavallaris, Nikos I.; Lacey, Andrew A.; Nikolopoulos, Christos V.; Tzanetis, Dimitrios E.; University of Chester ; Heriot-Watt University ; University of Aegean ; National Technical University of Athens (American Institute of Mathematical Sciences, 2015-03)