• Low Work Function Lacunary Polyoxometalates as Electron Transport Interlayers for Inverted Polymer Solar Cells of Improved Efficiency and Stability

      Tountas, Marinos; Topal, Yasemin; Polydorou, Ermioni; Soultati, Anastasia; Verykios, Apostolos; Kaltzoglou, Andreas; Papadopoulos, Theodoros A.; Auras, Florian; Seintis, Konstantinos; Fakis, Mihalis; et al. (American Chemical Society, 2017-06-06)
      Effective interface engineering has been shown to play a vital role in facilitating efficient charge-carrier transport, thus boosting the performance of organic photovoltaic devices. Herein, we employ water-soluble lacunary polyoxometalates (POMs) as multifunctional interlayers between the titanium dioxide (TiO2) electron extraction/transport layer and the organic photoactive film to simultaneously enhance the efficiency, lifetime, and photostability of polymer solar cells (PSCs). A significant reduction in the work function (WF) of TiO2 upon POM utilization was observed, with the magnitude being controlled by the negative charge of the anion and the selection of the addenda atom (W or Mo). By inserting a POM interlayer with ∼10 nm thickness into the device structure, a significant improvement in the power conversion efficiency was obtained; the optimized POM-modified poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2- 33 ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]:[6,6]-phenyl-C70 butyric acid methyl ester (PTB7:PC70BM)-based PSCs exhibited an efficiency of 8.07%, which represents a 21% efficiency enhancement compared to the reference TiO2 cell. Similar results were obtained in POM-modified devices based on poly(3-hexylthiophene) (P3HT) with electron acceptors of different energy levels, such as PC70BM or indene-C60 bisadduct (IC60BA), which enhanced their efficiency up to 4.34 and 6.21%, respectively, when using POM interlayers; this represents a 25–33% improvement as compared to the reference cells. Moreover, increased lifetime under ambient air and improved photostability under constant illumination were observed in POM-modified devices. Detailed analysis shows that the improvements in efficiency and stability synergistically stem from the reduced work function of TiO2 upon POM coverage, the improved nanomorphology of the photoactive blend, the reduced interfacial recombination losses, the superior electron transfer, and the more effective exciton dissociation at the photoactive layer/POM/TiO2 interfaces.
    • Terahertz reading of ferroelectric domain wall dielectric switching

      Zhang, Man; Chen, Zhe; Yue, Yajun; Chen, Tao; Yan, Zhongna; Jiang, Qinghui; Yang, Bin; Eriksson, Mirva; Tang, Jianhua; Zhang, Dou; et al.
      Ferroelectric domain walls (DWs) are important nano scale interfaces between two domains. It is widely accepted that ferroelectric domain walls work idly at terahertz (THz) frequencies, consequently discouraging efforts to engineer the domain walls to create new applications that utilise THz radiation. However, the present work clearly demonstrates the activity of domain walls at THz frequencies in a lead free Aurivillius phase ferroelectric ceramic, Ca0.99Rb0.005Ce0.005Bi2Nb2O9, examined using THz time domain spectroscopy (THz-TDS). The dynamics of domain walls are different at kHz and THz frequencies. At low frequencies, domain walls work as a group to increase dielectric permittivity. At THz frequencies, the defective nature of domain walls serves to lower the overall dielectric permittivity. This is evidenced by higher dielectric permittivity in the THz band after poling, reflecting decreased domain wall density. An elastic vibrational model has also been used to verify that a single frustrated dipole in a domain wall represents a weaker contribution to the permittivity than its counterpart within a domain. The work represents a fundamental breakthrough in understanding dielectric contributions of domain walls at THz frequencies. It also demonstrates that THz probing can be used to read domain wall dielectric switching.