• A Numerical Feasibility Study of Kinetic Energy Harvesting from Lower Limb Prosthetics

      Jia, Yu; orcid: 0000-0001-9640-1666; email: yu.jia.gb@ieee.org; Wei, Xueyong; orcid: 0000-0002-6443-4727; email: seanwei@mail.xjtu.edu.cn; Pu, Jie; email: 1821721@chester.ac.uk; Xie, Pengheng; email: 1821700@chester.ac.uk; Wen, Tao; orcid: 0000-0002-3216-6967; email: t.wen@chester.ac.uk; Wang, Congsi; email: congsiwang@163.com; Lian, Peiyuan; email: lian100fen@126.com; Xue, Song; email: sxue@xidian.edu.cn; Shi, Yu; orcid: 0000-0003-3891-7175; email: y.shi@chester.ac.uk (MDPI, 2019-10-10)
      With the advancement trend of lower limb prosthetics headed towards bionics (active ankle and knee) and smart prosthetics (gait and condition monitoring), there is an increasing integration of various sensors (micro-electromechanical system (MEMS) accelerometers, gyroscopes, magnetometers, strain gauges, pressure sensors, etc.), microcontrollers and wireless systems, and power drives including motors and actuators. All of these active elements require electrical power. However, inclusion of a heavy and bulky battery risks to undo the lightweight advancements achieved by the strong and flexible composite materials in the past decades. Kinetic energy harvesting holds the promise to recharge a small on-board battery in order to sustain the active systems without sacrificing weight and size. However, careful design is required in order not to over-burden the user from parasitic effects. This paper presents a feasibility study using measured gait data and numerical simulation in order to predict the available recoverable power. The numerical simulations suggest that, depending on the axis, up to 10s mW average electrical power is recoverable for a walking gait and up to 100s mW average electrical power is achievable during a running gait. This takes into account parasitic losses and only capturing a fraction of the gait cycle to not adversely burden the user. The predicted recoverable power levels are ample to self-sustain wireless communication and smart sensing functionalities to support smart prosthetics, as well as extend the battery life for active actuators in bionic systems. The results here serve as a theoretical foundation to design and develop towards regenerative smart bionic prosthetics.
    • Evaluating LevelEd AR: An Indoor Modelling Application for Serious Games Level Design

      Beever, Lee; Pop, Serban R.; John, Nigel W.; University of Chester (IEEE Conference Publications, 2019-09-06)
      We developed an application that makes indoor modelling accessible by utilizing consumer grade technology in the form of Apple’s ARKit and a smartphone to assist with serious games level design. We compared our system to that of a tape measure and a system based on an infra-red depth sensor and application. We evaluated the accuracy and efficiency of each system over four different measuring tasks of increasing complexity. Our results suggest that our application is more accurate than the depth sensor system and as accurate and more time efficient as the tape measure over several tasks. Participants also showed a preference to our LevelEd AR application over the depth sensor system regarding usability.
    • Virtual Reality Environment for the Cognitive Rehabilitation of Stroke Patients

      John, Nigel W.; Day, Thomas W.; Pop, Serban R.; Chatterjee, Kausik; Cottrell, Katy; Buchanan, Alastair; Roberts, Jonathan; University of Chester; Countess of Chester Hospital NHS Foundation Trust; Cadscan Ltd (IEEE, 2019-09-04)
      We present ongoing work to develop a virtual reality environment for the cognitive rehabilitation of patients as a part of their recovery from a stroke. A stroke causes damage to the brain and problem solving, memory and task sequencing are commonly affected. The brain can recover to some extent, however, and stroke patients have to relearn to carry out activities of daily learning. We have created an application called VIRTUE to enable such activities to be practiced using immersive virtual reality. Gamification techniques enhance the motivation of patients such as by making the level of difficulty of a task increase over time. The design and implementation of VIRTUE is presented together with the results of a small acceptability study.
    • Training Powered Wheelchair Manoeuvres in Mixed Reality

      Day, Thomas W.; John, Nigel W.; University of Chester (IEEE Xplore, 2019-09)
      We describe a mixed reality environment that has been designed as an aid for training driving skills for a powered wheelchair. Our motivation is to provide an improvement on a previous virtual reality wheelchair driving simulator, with a particular aim to remove any cybersickness effects. The results of a validation test are presented that involved 35 able bodied volunteers divided into three groups: mixed reality trained, virtual reality trained, and a control group. No significant differences in improvement was found between the groups but there is a notable trend that both the mixed reality and virtual reality groups improved more than the control group. Whereas the virtual reality group experienced discomfort (as measured using a simulator sickness questionnaire), the mixed reality group experienced no side effects.
    • The early stages of biofilm formation by Staphylococcus epidermidis studied by XPS and AFM

      Smith, Graham; Bava, Radhika (University of Chester, 2019-09)
      Staphylococcus epidermidis is an opportunistic bacteria which forms pathogenic biofilms in medical implant environment. Biofilm formation is a complex multistage process within which the initial stages of adhesion are deemed the most critical target for preventing biofilms. This research involves the characterisation of S. epidermidis (ATCC35984 and NCTC13360) by using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) on model substrates including glass, muscovite mica, silicon (111) wafer, sputter-coated titanium and sputter-coated silver, focusing on the effect of chemical properties of the material on adhesion by using surfaces with minimal roughness. AFM was used to image the surface, from which bacterial coverage can be estimated. AFM was also used to probe adhesion forces and local mechanical properties of all samples through the use of force-distance curves. AFM images were also used to estimate the bacterial coverage. XPS was used to investigate the surface chemistry from the layer thicknesses, the percentage coverage and potential composition of the overlayer. The combination of these techniques allow the relationships between the surface chemistry of the substrate and the bacteria to be correlated with changes in coverage and properties of bacterial films. Data on incubated bacterial samples were compared with those from the reference substrates, both before and after autoclaving, and from samples prepared using protein rich growth medium (tryptic soy broth) in the absence of bacteria as well as a pure bacterial pellet in an assumed non-biofilm forming state. The research indicates the potential differences between biofilm and non-biofilm former strains, with both strains being covered by an organic layer with little influence of the growth media used to incubate the bacteria. This research also shows how XPS and AFM data can be combined and applied to bacterial adhesion.
    • Evaporation of liquid nitrogen droplets in superheated immiscible liquids

      Rebelo, Neville; Zhao, Huayong; Nadal, Francois; Garner, Colin; Williams, Andy; Loughborough University; University of Chester (Elsevier, 2019-08-22)
      Liquid nitrogen or other cryogenic liquids have the potential to replace or augment current energy sources in cooling and power applications. This can be done by the rapid evaporation and expansion processes that occur when liquid nitrogen is injected into hotter fluids in mechanical expander systems. In this study, the evaporation process of single liquid nitrogen droplets when submerged into n-propanol, methanol, n-hexane, and n-pentane maintained at 294 K has been investigated experimentally and numerically. The evaporation process is quantified by tracking the growth rate of the resulting nitrogen vapour bubble that has an interface with the bulk liquid. The experimental data suggest that the bubble volume growth is proportional to the time and the bubble growth rate is mainly determined by the initial droplet size. A comparison between the four different bulk liquids indicates that the evaporation rate in n-pentane is the highest, possibly due to its low surface tension. A scaling law based on the pure diffusion-controlled evaporation of droplet in open air environment has been successfully implemented to scale the experimental data. The deviation between the scaling law predictions and the experimental data for 2-propanol, methanol and n-hexane vary between 4% and 30% and the deviation for n-pentane was between 24% and 65%. The more detailed bubble growth rates have been modelled by a heuristic one-dimensional, spherically symmetric quasi-steady-state confined model, which can predict the growth trend well but consistently underestimate the growth rate. A fixed effective thermal conductivity is then introduced to account for the complex dynamics of the droplet inside the bubble and the subsequent convective processes in the surrounding vapour, which leads to a satisfactory quantitative prediction of the growth rate.
    • Isolation of a Ferroelectric Intermediate Phase in Antiferroelectric Dense Sodium Niobate Ceramics

      Yang, Bin; Zhang, Hangfeng; Yan, Haixue; Abrahams, Isaac (Elsevier, 2019-08-22)
      Switchable ferroelectric/antiferroelectric ceramics are of significant interest for high power energy storage applications. Grain size control of this switching is an interesting approach to controlling polarization and hence dielectric properties. However, the use of this approach in technologically relevant ceramics is hindered by difficulty in fabricating dense ceramics with small grain sizes. Here an intermediate polar ferroelectric phase (P21ma) has been isolated in dense bulk sodium niobate ceramics by grain size control through spark plasma sintering methods. Our findings, supported by XRD, DSC, P-E (I-E) loops and dielectric characterization, provide evidence that the phase transition from the antiferroelectric (AFE) R-phase, in space group Pnmm, above 300 C, to the AFE P-phase, in space group Pbma, at room temperature, always involves the polar intermediate P21ma phase and that the P21ma to Pbma transition can be suppressed by reducing grain size.
    • Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces

      Mao, Xianwen; Brown, Paul; Cervinka, Citrad; Hazell, Gavin; Li, Hua; Ren, Yinying; Chen, Di; Atkin, Rob; Eastoe, Julian; Grillo, Isabelle; et al. (Springer Nature, 2019-08-12)
      Driven by the potential applications of ionic liquids (ILs) in many emerging electrochemical technologies, recent research efforts have been directed at understanding the complex ion ordering in these systems, to uncover novel energy storage mechanisms at IL–electrode interfaces. Here, we discover that surface-active ILs (SAILs), which contain amphiphilic structures inducing self-assembly, exhibit enhanced charge storage performance at electrified surfaces. Unlike conventional non amphiphilic ILs, for which ion distribution is dominated by Coulombic interactions, SAILs exhibit significant and competing van der Waals interactions owing to the non-polar surfactant tails, leading to unusual interfacial ion distributions. We reveal that, at an intermediate degree of electrode polarization, SAILs display optimum performance, because the low-charge-density alkyl tails are effectively excluded from the electrode surfaces, whereas the formation of non-polar domains along the surface suppresses undesired overscreening effects. This work represents a crucial step towards understanding the unique interfacial behaviour and electrochemical properties of amphiphilic liquid systems showing long-range ordering, and offers insights into the design principles for high-energy-density electrolytes based on spontaneous self-assembly behaviour.
    • An Altered Four Circulant Construction for Self-Dual Codes from Group Rings and New Extremal Binary Self-dual Codes I

      Gildea, Joe; Kaya, Abidin; Yildiz, Bahattin; University of Chester; Sampoerna University; Northern Arizona University (Elsevier, 2019-08-07)
      We introduce an altered version of the four circulant construction over group rings for self-dual codes. We consider this construction over the binary field, the rings F2 + uF2 and F4 + uF4; using groups of order 4 and 8. Through these constructions and their extensions, we find binary self-dual codes of lengths 16, 32, 48, 64 and 68, many of which are extremal. In particular, we find forty new extremal binary self-dual codes of length 68, including twelve new codes with \gamma=5 in W68,2, which is the first instance of such a value in the literature.
    • Aging and Cholesterol Metabolism

      Mc Auley, Mark T.; University of Chester (Springer, 2019-07-30)
      The role cholesterol metabolism has to play in health span is clear, and monitoring the parameters of cholesterol metabolism is key to aging successfully. The aim of this chapter is to provide a brief overview of the mechanisms which regulate cholesterol in the body, secondly to discuss how aging effects cholesterol metabolism, and thirdly to unveil how systems biology is leading to an improved understanding of the intersection between aging and the dysregulation of cholesterol metabolism.
    • Factors for successful Agile collaboration between UX designers and software developers in a complex organisation

      Avis, Nick; Kerins, John; Jones, Alexander J (University of Chester, 2019-07-23)
      User Centred Design (UCD) and Agile Software Development (ASD) processes have been two extremely successful methods for software development in recent years. However, both have been repeatedly described as frequently putting contradictory demands on people working with the respective processes. The current research addresses this point by focussing on the crucial relationship between a User Experience (UX) designer and a software developer. In-depth interviews, an online survey, a contextual inquiry and a diary study are described from a sample of over 100 designers, developers and their stakeholders (managers) in a large media organisation exploring factors for success in Agile development cycles. The findings from the survey show that organisational separation is challenge for agile collaboration between the two roles and while designers and developers have similar levels of (moderately positive) satisfaction with Agile processes, there are differences between the two roles. While developers are happier with the wider teamwork but want more access to and close collaboration with designers, particularly in an environment set up for Agile practices, the designers’ concern was the quality of the wider teamwork. The respondent’s comments also identified that the two roles saw a close – and ideally co-located – cooperation as essential for improving communication, reducing inefficiencies, and avoiding bad products being released. These results reflected the findings from the in-depth interviews with stakeholders. In particular, it was perceived that co-located pairing helped understanding different role-dependent demands and skills, increased efficiency of prototyping and implementing changes, and enabling localised decision-making. However, organisational processes, the setup of work-environment, and managerial traditions meant that this close collaboration and localised decision-making was often not possible to maintain over extended periods. Despite this, the studies conducted between pairs of designers and developers, found that successful collaboration between designers and developers can be found in a complex organisational setting. From the analysis of the empirical studies, six contributing factors emerged that support this. These factors are 1) Close proximity, 2) Early and frequent communication, 3) Shared ideation and problem solving, 4) Crossover of knowledge and skills, 5) Co-creation and prototyping and 6) Making joint decisions. These factors are crucially determined and empowered by the support from the organisational setting and 3 teams where practitioners work. Specifically, by overcoming key challenges to enable integration between UCD and ASD and thus encouraging close collaboration between UX designers and software developers, these challenges are: 1) Organisational structure and team culture, 2) Location and environmental setup and 3) Decision-making. These challenges along with the six factors that enable successful Agile collaboration between designers and developers provide the main contributions of this research. These contributions can be applied within large complex organisations by adopting the suggested ‘Paired Collaboration Manifesto’ to improve the integration between UCD and ASD. Beyond this, more empirical studies can take place, further extending improvements to the collaborative practices between the design and development roles and their surrounding teams.
    • Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential.

      Halevas, Eleftherios; email: lefterishalevas@gmail.com; Mavroidi, Barbara; Swanson, Claudia H; Smith, Graham C; Moschona, Alexandra; Hadjispyrou, Spyros; Salifoglou, Athanasios; Pantazaki, Anastasia A; Pelecanou, Maria; Litsardakis, George (2019-07-15)
      In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity. [Abstract copyright: Copyright © 2019 Elsevier Inc. All rights reserved.]
    • Magnetic cationic liposomal nanocarriers for the efficient drug delivery of a curcumin-based vanadium complex with anticancer potential

      Halevesa, Eleftherios; Mavroidi, Barbara; Swanson, Claudia H; Smith, Graham C; Moschona, Alexandra; Hadjispyrou, Spyros; Salifoglou, Athanasios; Pantazakie, Anastasia; Pelecanou, Maria; Litsardakis, George; et al. (Elsevier, 2019-07-15)
      In this work novel magnetic cationic liposomal nanoformulations were synthesized for the encapsulation of a crystallographically defined ternary V(IV)-curcumin-bipyridine (VCur) complex with proven bioactivity, as potential anticancer agents. The liposomal vesicles were produced via the thin film hydration method employing N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium (DOTAP) and egg phosphatidylcholine lipids and were magnetized through the addition of citric acid surface-modified monodispersed magnetite colloidal magnetic nanoparticles. The obtained nanoformulations were evaluated for their structural and textural properties and shown to have exceptional stability and enhanced solubility in physiological media, demonstrated by the entrapment efficiency and loading capacity results and the in vitro release studies of their cargo. Furthermore, the generated liposomal formulations preserved the superparamagnetic behavior of the employed magnetic core maintaining the physicochemical and morphological requirements for targeted drug delivery applications. The novel nanomaterials were further biologically evaluated for their DNA interaction potential and were found to act as intercalators. The findings suggest that the positively charged magnetic liposomal nanoformulations can generate increased concentration of their cargo at the DNA site, offering a further dimension in the importance of cationic liposomes as nanocarriers of hydrophobic anticancer metal ion complexes for the development of new multifunctional pharmaceutical nanomaterials with enhanced bioavailability and targeted antitumor activity.
    • The effect of irradiation impinging on disparate anchoring configurations of polar-organic molecules adsorbed on bulk and thin-film metal surfaces

      Papadopoulos, Theodoros A.; Metz, Sebastian; Tang, Shu-Jung; University of Chester; Daresbury Laboratory; National Tsing-Hua University (Elsevier, 2019-07-11)
      The behavior of polar metal organic molecules, chloroaluminum phthalocyanine (ClAlPc), upon ultraviolet (UV) irradiation was investigated to evaluate the stability of the adsorption process on the Ag(111) thin film and bulk crystal. Angle-resolved photoelectron spectroscopy (ARPES) was mainly employed to measure the molecular energy states (MES) and vacuum level (VL) shift for 1-ML ClAlPc in the Cl-down configuration. A consistent trend was observed showing that ClAlPc in the Cl-down configuration is energetically more stable on the Ag thin-film surface than on the corresponding surface of the Ag bulk crystal. The intermediate adsorption state in tilted configuration during the irradiation impinging is identified by large positive VL shifts and broad spectra line shapes to infer a flipping mechanism from Cl-down to Cl-up configuration. Strain on the Ag thin films from the underlying mismatched Ge(111) substrate is considered to cause enlarged hollow sites on the Ag(111) thin-films, that anchor the Cl-down configuration more tightly on the thin-film surfaces, as confirmed by density functional theory (DFT) calculations.
    • Quadruple Bordered Constructions of Self-Dual Codes from Group Rings

      Dougherty, Steven; Gildea, Joe; Kaya, Abidin; University of Scranton; University of Chester; Sampoerna University (Springer Verlag, 2019-07-05)
      In this paper, we introduce a new bordered construction for self-dual codes using group rings. We consider constructions over the binary field, the family of rings Rk and the ring F4 + uF4. We use groups of order 4, 12 and 20. We construct some extremal self-dual codes and non-extremal self-dual codes of length 16, 32, 48, 64 and 68. In particular, we construct 33 new extremal self-dual codes of length 68.
    • Studies of black diamond as an antibacterial surface for gram negative bacteria: the interplay between chemical and mechanical bactericidal activity

      Dunseath, Olivia; Smith, E. J. W.; Al-Jeda, T.; Smith, J. A.; King, Sophie; May, Paul W.; Nobbs, Angela H.; Hazell, Gavin; Welch, Colin C.; Su, Bo; et al. (Nature, 2019-06-19)
      ‘Black silicon’ (bSi) samples with surfaces covered in nanoneedles of length ~5 μm were fabricated using a plasma etching process and then coated with a conformal uniform layer of diamond using hot filament chemical vapour deposition to produce ‘black diamond’ (bD) nanostructures. The diamond needles were then chemically terminated with H, O, NH2 or F using plasma treatment, and the hydrophilicity of the resulting surfaces were assessed using water droplet contact-angle measurements, and scaled in the order O > H ≈NH2 >F, with the F-terminated surface being superhydrophobic. The effectiveness of these differently terminated bD needles in killing the Gram-negative bacterium E. coli was semiquantified by Live/Dead staining and fluorescence microscopy, and visualised by environmental scanning electron microscopy. The total number of adhered bacteria was consistent for all the nanostructured bD surfaces at around 50% of the value for the flat diamond control. This, combined with a chemical bactericidal effect of 20–30%, shows that the nanostructured bD surfaces supported significantly fewer viable E. coli than flat surfaces. Moreover, the bD surfaces were particularly effective at preventing the establishment of bacterial aggregates – a precursor to biofilm formation. The percentage of dead bacteria also decreased as a function of hydrophilicity. These results are consistent with a predominantly mechanical mechanism for bacteria death based on the stretching and disruption of the cell membrane, combined with an additional effect from the chemical nature of the surface.
    • Quality Mapping of Offset Lithographic Printed Antenna Substrates and Electrodes by Millimeter-Wave Imaging

      Zhang, Jiao; Tang, Jianhua; Sun, Wenfeng; Zhang, Yan; Yang, Bin; Wang, Xinke; University of Chester (MDPI, 2019-06-14)
      Offset lithographic printed flexible antenna substrate boards and electrodes have attracted much attention recently due to the boost of flexible electronics. Unmanned quality inspection of these printed substrate boards and electrodes demands high-speed, large-scale and nondestructive methods, which is highly desired for manufacturing industries. The work here demonstrates two kinds of millimeter (mm)-wave imaging technologies for the quality (surface uniformity and functionality parameters) inspection of printed silver substrates and electrodes on paper and thin polyethylene film, respectively. One technology is a mm-wave line scanner system and the other is a terahertz-time domain spectroscopy-based charge-coupled device (CCD) imaging system. The former shows the ability of detecting transmitted mm-wave amplitude signals only; its detection is fast in a second time scale and the system shows great potential for the inspection of large-area printed surface uniformity. The latter technology achieves high spatial resolution images of up to hundreds of micrometers at the cost of increased inspection time, in a time scale of tens of seconds. With the exception of absorption rate information, the latter technology offers additional phase information, which can be used to work out 2D permittivity distribution. Moreover, its uniformity is vital for the antenna performance. Additionally, the results demonstrate that compression rolling treatment significantly improves the uniformity of printed silver surfaces and enhances the substrate’s permittivity values.
    • Dielectric and Double Debye Parameters of Artificial Normal Skin and Melanoma

      Yang, Bin; Zhang, Rui; Yang, Ke; AbuAli, Najah A.; Hayajneh, Mohammad; Philpott, Mike; Abbasi, Qammer H.; Alomainy, Akram; University of Chester (Springer, 2019-05-16)
      The aim of this study is to characterise the artificial normal skin and melanoma by testing samples with different fibroblast and metastatic melanoma cell densities using terahertz (THz) time-domain spectroscopy (TDS) attenuated total reflection (ATR) technique. Results show that melanoma samples have higher refractive index and absorption coefficient than artificial normal skin with the same fibroblast density in the frequency range between 0.4 and 1.6 THz, and this contrast increases with frequency. It is primarily because that the melanoma samples have higher water content than artificial normal skin, and the main reason to melanoma containing more water is that tumour cells degrade the contraction of the collagen lattice. In addition, complex refractive index and permittivity of the melanoma samples have larger variations than that of normal skin samples. For example, the refractive index of artificial normal skin at 0.5 THz increases 4.3% while that of melanoma samples increases 8.7% when the cell density rises from 0.1 to 1 M/ml. It indicates that cellular response of fibroblast and melanoma cells to THz radiation is significantly different. Furthermore, the extracted double Debye (DD) model parameters demonstrate that the static permittivity at low frequency and slow relaxation time can be reliable classifiers to differentiate melanoma from healthy skin regardless of the cell density. This study helps understand the complex response of skin tissues to THz radiation and the origin of the contrast between normal skin and cancerous tissues.
    • Methods for the Treatment of Cattle Manure—A Review

      Font Palma, Carolina (MDPI, 2019-05-15)
      Environmental concerns, caused by greenhouse gases released to the atmosphere and overrunning of nutrients and pathogens to water bodies, have led to reducing direct spread onto the land of cattle manure. In addition, this practice can be a source of water and air pollution and toxicity to life by the release of undesirable heavy metals. Looking at the current practices, it is evident that most farms separate solids for recycling purposes, store slurries in large lagoons or use anaerobic digestion to produce biogas. The review explores the potential for cattle manure as an energy source due to its relatively large calorific value (HHV of 8.7–18.7 MJ/kg dry basis). This property is beneficial for thermochemical conversion processes, such as gasification and pyrolysis. This study also reviews the potential for upgrading biogas for transportation and heating use. This review discusses current cattle manure management technologies—biological treatment and thermochemical conversion processes—and the diverse physical and chemical properties due to the differences in farm practices.
    • Virtual and Mixed Reality Support for Activities of Daily Living

      John, Nigel; Day, Thomas W. (University of Chester, 2019-05-14)
      Rehabilitation and training are extremely important process that help people who have suffered some form of trauma to regain their ability to live independently and successfully complete activities of daily living. VR and MR have been used in rehabilitation and training, with examples in a range of areas such as physical and cognitive rehabilitation, and medical training. However, previous research has mainly used non-immersive VR such as using video games on a computer monitor or television. Immersive VR Head-Mounted Displays were first developed in 1965 but the devices were usually large, bulky and expensive. In 2016, the release of low-cost VR HMDs allowed for wider adoption of VR technology. This thesis investigates the impact of these devices in supporting activities of daily living through three novel applications: training driving skills for a powered wheelchair in both VR and MR; and using VR to help with the cognitive rehabilitation of stroke patients. Results from the acceptability study for VR in cognitive rehabilitation showed that patients would be likely to accept VR as a method of rehabilitation. However, factors such as visual issues need to be taken into consideration. The validation study for the Wheelchair-VR project showed promising results in terms of user improvement after the VR training session but the majority of the users experienced symptoms of cybersickness. Wheelchair-MR didn’t show statistically significant results in terms of improvements but did show a mean average improvement compared to the control group. The effects of cybersickness were also greatly reduced compared to VR. We conclude that VR and MR can be used in conjunction with modern games engines to develop virtual environments that can be adapted to accelerate the rehabilitation and training of patients coping with different aspects of daily life.