Show simple item record

dc.contributor.authorFord, Neville J.*
dc.contributor.authorLunel, Sjoerd M. V.*
dc.date.accessioned2007-11-13T13:36:16Z
dc.date.available2007-11-13T13:36:16Z
dc.date.issued2002-09-25
dc.identifier.citationApplied mathematics and computation, 2002, 131, pp. 253-270.en
dc.identifier.issn0096-3003en
dc.identifier.doi10.1016/S0096-3003(01)00144-8
dc.identifier.urihttp://hdl.handle.net/10034/14553
dc.descriptionThis article is not available through ChesterRep.en
dc.description.abstractThis article discusses how the existence of small solutions for delay differential equations can be predicted from the behaviour of the spectrum of the finite dimensional approximations.
dc.description.sponsorshipThis article was submitted to the RAE2008 for the University of Chester - Applied Mathematics.en
dc.language.isoenen
dc.publisherElsevier Scienceen
dc.relation.urlhttp://www.elsevier.com/wps/find/journaldescription.cws_home/522482/description#descriptionen
dc.subjectsmall solutionsen
dc.subjectdelay equationsen
dc.subjectnumerical solutionsen
dc.titleCharacterising small solutions in delay differential equations through numerical approximationsen
dc.typeArticleen
dc.format.digYESen
html.description.abstractThis article discusses how the existence of small solutions for delay differential equations can be predicted from the behaviour of the spectrum of the finite dimensional approximations.


Files in this item

Thumbnail
Name:
Publisher version

This item appears in the following Collection(s)

Show simple item record