Show simple item record

dc.contributor.authorDiethelm, Kai*
dc.contributor.authorFord, Neville J.*
dc.contributor.authorFreed, Alan D.*
dc.date.accessioned2007-05-15T12:34:18Z
dc.date.available2007-05-15T12:34:18Z
dc.date.issued2004-05
dc.identifier.citationNumerical algorithms, 26, 2004, pp. 31-52.en
dc.identifier.issn1017-1398en
dc.identifier.doi10.1023/B:NUMA.0000027736.85078.be
dc.identifier.urihttp://hdl.handle.net/10034/11849
dc.descriptionThis is a PDF version of a preprint submitted to Springer. The definitive version was published in the Numerical algorithms. The original publication is available at www.springerlink.comen
dc.description.abstractThis preprint discusses a method for a numerical solution of a nonlinear fractional differential equation, which can be seen as a generalisation of the Adams–Bashforth–Moulton scheme.
dc.format.extent296947 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringeren
dc.relation.urlhttp://www.ingentaconnect.com/content/klu/numa;jsessionid=25ksfiebgjavm.victoriaen
dc.subjectfractional differential equationsen
dc.subjectAdams–Bashforth–Moulton schemeen
dc.titleDetailed error analysis for a fractional Adams methoden
dc.typePreprinten
dc.format.digYESen
html.description.abstractThis preprint discusses a method for a numerical solution of a nonlinear fractional differential equation, which can be seen as a generalisation of the Adams–Bashforth–Moulton scheme.


Files in this item

Thumbnail
Name:
diethelm, ford & freed.pdf
Size:
346.0Kb
Format:
PDF
Request:
preprint

This item appears in the following Collection(s)

Show simple item record