• The Use of Stereoscopy in a Neurosurgery Training Virtual Environment

      John, Nigel W.; Phillips, Nicholas I.; ap Cenydd, Llyr; Pop, Serban R.; Coope, David; Kamaly-Asl, Ian; de Souza, Christopher; Watt, Simon J.; University of Chester, Leeds General Infirmary, Bangor University, University of Manchester, Salford Royal NHS Foundation Trust, Cardiff University (MIT Press, 2017-03-15)
      We have previously investigated the effectiveness of a custom built virtual environment in assisting training of a ventriculostomy procedure, which is a commonly performed procedure by a neurosurgeon and a core task for trainee surgeons. The training tool (called VCath) was initially developed as a low fidelity app for a tablet platform to provide easy access and availability to trainees. Subsequently we have developed a high fidelity version of VCath that uses a stereoscopic display to immerse the trainee in the virtual environment. This paper reports on two studies that have been carried out to compare the low and high fidelity versions of VCath, particularly to assess the value of stereoscopy. Study 1 was conducted at the second annual boot camp organized for all year one trainees in neurosurgery in the UK. Study 2 was performed on lay people, with no surgical experience. Our hypothesis was that using stereoscopy in the training task would be beneficial. Results from Study 1 demonstrated that performance improved for both the control group and the group trained with the tablet version of VCath. The group trained on the high fidelity version of VCath with a stereoscopic display showed no performance improvement. The indication is that our hypothesis is false. In Study 2, six different conditions were investigated that covered the use of training with VCath on a tablet, a mono display at two different sizes, a stereo display at two different sizes, and a control group who received no training. Results from this study with lay people show that stereoscopy can make a significant improvement to the accuracy of needle placement. The possible reasons for these results and the apparent contradiction between the two studies are discussed.
    • Using and Validating Airborne Ultrasound as a Tactile Interface within Medical Training Simulators

      Hung, Gary M. Y.; John, Nigel W.; Hancock, Chris; Hoshi, Takayuki; University of Chester (Springer International Publishing, 2014-10)
      We have developed a system called UltraSendo that creates a force field in space using an array of ultrasonic transducers cooperatively emitting ultrasonic waves to a focal point. UltraSendo is the first application of this technology in the context of medical training simulators. A face validation study was carried out at a Catheter Laboratory in a major regional hospital.
    • Using Virtual Reality to Experience Different Powered Wheelchair Configurations

      Day, Thomas; Headleand, Christopher; Pop, Serban; John, Nigel; Dobson, William; University of Chester, University of Lincoln (2017-09)
      This paper presents recent additions to our Wheelchair-VR application, in particular the use of different drive configurations. We have previously shown that Wheelchair-VR can be used to improve driving skills. Here we consider the utility of the application in allowing users who are in the process of purchasing or upgrading a wheelchair to experience different configurations and options in a cost-effective virtual environment. A preliminary study is presented, which suggests that this approach can be effective.
    • Visualization beyond the Desktop--the Next Big Thing

      Roberts, Jonathan C.; Ritsos, Panagiotis D.; Badam, Sriram Karthik; Brodbeck, Dominique; Kennedy, Jessie; Elmqvist, Niklas; University of Chester (IEEE, 2014-11)
      Visualization researchers need to develop and adapt to today’s new devices and tomorrow’s technology. Today, people interact with visual depictions through a mouse. Tomorrow, they’ll be touching, swiping, grasping, feeling, hearing, smelling, and even tasting data.
    • VRIA - A Framework for Immersive Analytics on the Web

      Butcher, Peter; John, Nigel; Ritsos, Panagiotis; University of Chester and Bangor University (ACM, 2019-05)
      We report on the design, implementation and evaluation of <VRIA>, a framework for building immersive analytics (IA) solutions inWeb-based Virtual Reality (VR), built upon WebVR, A-Frame, React and D3. The recent emergence of affordable VR interfaces have reignited the interest of researchers and developers in exploring new, immersive ways to visualize data. In particular, the use of open-standards web-based technologies for implementing VR in a browser facilitates the ubiquitous and platform-independent adoption of IA systems. Moreover, such technologies work in synergy with established visualization libraries, through the HTML document object model (DOM). We discuss high-level features of <VRIA> and present a preliminary user experience evaluation of one of our use-cases.
    • Wheelchair-MR: A Mixed Reality Wheelchair Training Environment

      Day, Thomas; University of Chester (2017-09-20)
      In previous work we have demonstrated that Virtual Reality can be used to help train driving skills for users of a powered wheelchair. However, cybersickness was a particular problem. This work-in-progress paper presents a Mixed Reality alternative to our wheelchair training software, which overcomes this problem. The design and implementation of this application is discussed. Early results shows some promise and overcomes the cybersickness issue. More work is needed before a larger scale study can be undertaken.