• LevelEd VR: A virtual reality level editor and workflow for virtual reality level design

      Beever, Lee; Pop, Serban W.; John, Nigel W.; University of Chester
      Virtual reality entertainment and serious games popularity has continued to rise but the processes for level design for VR games has not been adequately researched. Our paper contributes LevelEd VR; a generic runtime virtual reality level editor that supports the level design workflow used by developers and can potentially support user generated content. We evaluated our LevelEd VR application and compared it to an existing workflow of Unity on a desktop. Our current research indicates that users are accepting of such a system, and it has the potential to be preferred over existing workflows for VR level design. We found that the primary benefit of our system is an improved sense of scale and perspective when creating the geometry and implementing gameplay. The paper also contributes some best practices and lessons learned from creating a complex virtual reality tool, such as LevelEd VR.
    • An overview of self-adaptive technologies within virtual reality training

      Vaughan, Neil; Gabrys, Bogdan; Dubey, Venketesh; University of Chester
      This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training.