• Building Immersive Data Visualizations for the Web

      Butcher, Peter; Ritsos, Panagiotis D.; University of Chester; Bangor University (IEEE Conference Publications, 2017-09)
      We present our early work on building prototype applications for Immersive Analytics using emerging standards-based web technologies for VR. For our preliminary investigations we visualize 3D bar charts that attempt to resemble recent physical visualizations built in the visualization community. We explore some of the challenges faced by developers in working with emerging VR tools for the web, and in building effective and informative immersive 3D visualizations.
    • Comparing and combining time series trajectories using Dynamic Time Warping

      Vaughan, Neil; Gabrys, Bogdan; Bournemouth University (Elsevier, 2016-09-04)
      This research proposes the application of dynamic time warping (DTW) algorithm to analyse multivariate data from virtual reality training simulators, to assess the skill level of trainees. We present results of DTW algorithm applied to trajectory data from a virtual reality haptic training simulator for epidural needle insertion. The proposed application of DTW algorithm serves two purposes, to enable (i) two trajectories to be compared as a similarity measure and also enables (ii) two or more trajectories to be combined together to produce a typical or representative average trajectory using a novel hierarchical DTW process. Our experiments included 100 expert and 100 novice simulator recordings. The data consists of multivariate time series data-streams including multi-dimensional trajectories combined with force and pressure measurements. Our results show that our proposed application of DTW provides a useful time-independent method for (i) comparing two trajectories by providing a similarity measure and (ii) combining two or more trajectories into one, showing higher performance compared to conventional methods such as linear mean. These results demonstrate that DTW can be useful within virtual reality training simulators to provide a component in an automated scoring and assessment feedback system.
    • A Cost-Effective Virtual Environment for Simulating and Training Powered Wheelchairs Manoeuvres

      Headleand, Christopher J.; Day, Thomas W.; Pop, Serban R.; Ritsos, Panagiotis D.; John, Nigel W.; Bangor University and University of Chester (IOS Press, 2016-04-07)
      Control of a powered wheelchair is often not intuitive, making training of new users a challenging and sometimes hazardous task. Collisions, due to a lack of experience can result in injury for the user and other individuals. By conducting training activities in virtual reality (VR), we can potentially improve driving skills whilst avoiding the risks inherent to the real world. However, until recently VR technology has been expensive and limited the commercial feasibility of a general training solution.We describe Wheelchair-Rift, a cost effective prototype simulator that makes use of the Oculus Rift head mounted display and the Leap Motion hand tracking device. It has been assessed for face validity by a panel of experts from a local Posture and Mobility Service. Initial results augur well for our cost-effective training solution.
    • An Endoscope Interface for Immersive Virtual Reality

      John, Nigel W.; Day, Thomas W.; Wardle, Terrence; University of Chester
      This is a work in progress paper that describes a novel endoscope interface designed for use in an immersive virtual reality surgical simulator. We use an affordable off the shelf head mounted display to recreate the operating theatre environment. A hand held controller has been adapted so that it feels like the trainee is holding an endoscope controller with the same functionality. The simulator allows the endoscope shaft to be inserted into a virtual patient and pushed forward to a target position. The paper describes how we have built this surgical simulator with the intention of carrying out a full clinical study in the near future.
    • The Implementation and Validation of a Virtual Environment for Training Powered Wheelchair Manoeuvres

      John, Nigel W.; Pop, Serban R.; Day, Thomas W.; Ritsos, Panagiotis D.; Headleand, Christopher J.; University of Chester; Bangor University; University of Lincoln (IEEE, 2017-05-02)
      Navigating a powered wheelchair and avoiding collisions is often a daunting task for new wheelchair users. It takes time and practice to gain the coordination needed to become a competent driver and this can be even more of a challenge for someone with a disability. We present a cost-effective virtual reality (VR) application that takes advantage of consumer level VR hardware. The system can be easily deployed in an assessment centre or for home use, and does not depend on a specialized high-end virtual environment such as a Powerwall or CAVE. This paper reviews previous work that has used virtual environments technology for training tasks, particularly wheelchair simulation. We then describe the implementation of our own system and the first validation study carried out using thirty three able bodied volunteers. The study results indicate that at a significance level of 5% then there is an improvement in driving skills from the use of our VR system. We thus have the potential to develop the competency of a wheelchair user whilst avoiding the risks inherent to training in the real world. However, the occurrence of cybersickness is a particular problem in this application that will need to be addressed.
    • Interventional radiology virtual simulator for liver biopsy

      Villard, Pierre-Frédéric; Vidal, Franck P.; ap Cenydd, Llyr; Holbrey, Richard; Pisharody, S.; Johnson, Sheena; Bulpitt, Andy; John, Nigel W.; Bello, Fernando; Gould, Daniel (Springer, 2013-07-24)
      Training in Interventional Radiology currently uses the apprenticeship model, where clinical and technical skills of invasive procedures are learnt during practice in patients. This apprenticeship training method is increasingly limited by regulatory restrictions on working hours, concerns over patient risk through trainees' inexperience and the variable exposure to case mix and emergencies during training. To address this, we have developed a computer-based simulation of visceral needle puncture procedures. Methods A real-time framework has been built that includes: segmentation, physically based modelling, haptics rendering, pseudo-ultrasound generation and the concept of a physical mannequin. It is the result of a close collaboration between different universities, involving computer scientists, clinicians, clinical engineers and occupational psychologists. Results The technical implementation of the framework is a robust and real-time simulation environment combining a physical platform and an immersive computerized virtual environment. The face, content and construct validation have been previously assessed, showing the reliability and effectiveness of this framework, as well as its potential for teaching visceral needle puncture. Conclusion A simulator for ultrasound-guided liver biopsy has been developed. It includes functionalities and metrics extracted from cognitive task analysis. This framework can be useful during training, particularly given the known difficulties in gaining significant practice of core skills in patients.
    • ParaVR: A Virtual Reality Training Simulator for Paramedic Skills maintenance

      Rees, Nigel; Dorrington, Keith; Rees, Lloyd; Day, Thomas W; Vaughan, Neil; John, Nigel W; Welsh Ambulance Services NHS Trust, University of Chester
      Background, Virtual Reality (VR) technology is emerging as a powerful educational tool which is used in medical training and has potential benefits for paramedic practice education. Aim The aim of this paper is to report development of ParaVR, which utilises VR to address skills maintenance for paramedics. Methods Computer scientists at the University of Chester and the Welsh Ambulance Services NHS Trust (WAST) developed ParaVR in four stages: 1. Identifying requirements and specifications 2. Alpha version development, 3. Beta version development 4. Management: Development of software, further funding and commercialisation. Results Needle Cricothyrotomy and Needle Thoracostomy emerged as candidates for the prototype ParaVR. The Oculus Rift head mounted display (HMD) combined with Novint Falcon haptic device was used, and a virtual environment crafted using 3D modelling software, ported (a computing term meaning transfer (software) from one system or machine to another) onto Oculus Go and Google cardboard VR platform. Conclusion VR is an emerging educational tool with the potential to enhance paramedic skills development and maintenance. The ParaVR program is the first step in our development, testing, and scaling up of this technology.
    • The Use of Stereoscopy in a Neurosurgery Training Virtual Environment

      John, Nigel W.; Phillips, Nicholas I.; ap Cenydd, Llyr; Pop, Serban R.; Coope, David; Kamaly-Asl, Ian; de Souza, Christopher; Watt, Simon J.; University of Chester, Leeds General Infirmary, Bangor University, University of Manchester, Salford Royal NHS Foundation Trust, Cardiff University (MIT Press, 2017-03-15)
      We have previously investigated the effectiveness of a custom built virtual environment in assisting training of a ventriculostomy procedure, which is a commonly performed procedure by a neurosurgeon and a core task for trainee surgeons. The training tool (called VCath) was initially developed as a low fidelity app for a tablet platform to provide easy access and availability to trainees. Subsequently we have developed a high fidelity version of VCath that uses a stereoscopic display to immerse the trainee in the virtual environment. This paper reports on two studies that have been carried out to compare the low and high fidelity versions of VCath, particularly to assess the value of stereoscopy. Study 1 was conducted at the second annual boot camp organized for all year one trainees in neurosurgery in the UK. Study 2 was performed on lay people, with no surgical experience. Our hypothesis was that using stereoscopy in the training task would be beneficial. Results from Study 1 demonstrated that performance improved for both the control group and the group trained with the tablet version of VCath. The group trained on the high fidelity version of VCath with a stereoscopic display showed no performance improvement. The indication is that our hypothesis is false. In Study 2, six different conditions were investigated that covered the use of training with VCath on a tablet, a mono display at two different sizes, a stereo display at two different sizes, and a control group who received no training. Results from this study with lay people show that stereoscopy can make a significant improvement to the accuracy of needle placement. The possible reasons for these results and the apparent contradiction between the two studies are discussed.
    • Using Virtual Reality to Experience Different Powered Wheelchair Configurations

      Day, Thomas W.; Headleand, Christopher J.; Pop, Serban R.; John, Nigel W.; Dobson, William; University of Chester, University of Lincoln (2017-09-31)
      This paper presents recent additions to our Wheelchair-VR application, in particular the use of different drive configurations. We have previously shown that Wheelchair-VR can be used to improve driving skills. Here we consider the utility of the application in allowing users who are in the process of purchasing or upgrading a wheelchair to experience different configurations and options in a cost-effective virtual environment. A preliminary study is presented, which suggests that this approach can be effective.
    • VRIA: A Web-based Framework for Creating Immersive Analytics Experiences

      Butcher, Peter; John, Nigel W; Ritsos, Panagiotis D.; University of Chester and Bangor University (IEEE, 2020-01-09)
      We present<VRIA>, a Web-based framework for creating Immersive Analytics (IA) experiences in Virtual Reality.<VRIA>is built upon WebVR, A-Frame, React and D3.js, and offers a visualization creation workflow which enables users, of different levels of expertise, to rapidly develop Immersive Analytics experiences for the Web. The use of these open-standards Web-based technologies allows us to implement VR experiences in a browser and offers strong synergies with popular visualization libraries, through the HTMLDocument Object Model (DOM). This makes<VRIA>ubiquitous and platform-independent. Moreover, by using WebVR’s progressive enhancement, the experiences<VRIA>creates are accessible on a plethora of devices. We elaborate on our motivation for focusing on open-standards Web technologies, present the<VRIA>creation workflow and detail the underlying mechanics of our framework. We also report on techniques and optimizations necessary for implementing Immersive Analytics experiences on the Web, discuss scalability implications of our framework, and present a series of use case applications to demonstrate the various features of <VRIA>. Finally, we discuss current limitations of our framework, the lessons learned from its development, and outline further extensions.
    • Wheelchair-MR: A Mixed Reality Wheelchair Training Environment

      Day, Thomas W.; University of Chester (IEEE, 2017-09-20)
      In previous work we have demonstrated that Virtual Reality can be used to help train driving skills for users of a powered wheelchair. However, cybersickness was a particular problem. This work-in-progress paper presents a Mixed Reality alternative to our wheelchair training software, which overcomes this problem. The design and implementation of this application is discussed. Early results shows some promise and overcomes the cybersickness issue. More work is needed before a larger scale study can be undertaken.