• Building Immersive Data Visualizations for the Web

      Butcher, Peter; Ritsos, Panagiotis D.; University of Chester; Bangor University (IEEE Conference Publications, 2017-09)
      We present our early work on building prototype applications for Immersive Analytics using emerging standards-based web technologies for VR. For our preliminary investigations we visualize 3D bar charts that attempt to resemble recent physical visualizations built in the visualization community. We explore some of the challenges faced by developers in working with emerging VR tools for the web, and in building effective and informative immersive 3D visualizations.
    • Evaluating LevelEd AR: An Indoor Modelling Application for Serious Games Level Design

      Beever, Lee; Pop, Serban R.; John, Nigel W.; University of Chester (IEEE Conference Publications, 2019-09-06)
      We developed an application that makes indoor modelling accessible by utilizing consumer grade technology in the form of Apple’s ARKit and a smartphone to assist with serious games level design. We compared our system to that of a tape measure and a system based on an infra-red depth sensor and application. We evaluated the accuracy and efficiency of each system over four different measuring tasks of increasing complexity. Our results suggest that our application is more accurate than the depth sensor system and as accurate and more time efficient as the tape measure over several tasks. Participants also showed a preference to our LevelEd AR application over the depth sensor system regarding usability.
    • LevelEd VR: A virtual reality level editor and workflow for virtual reality level design

      Beever, Lee; Pop, Serban W.; John, Nigel W.; University of Chester
      Virtual reality entertainment and serious games popularity has continued to rise but the processes for level design for VR games has not been adequately researched. Our paper contributes LevelEd VR; a generic runtime virtual reality level editor that supports the level design workflow used by developers and can potentially support user generated content. We evaluated our LevelEd VR application and compared it to an existing workflow of Unity on a desktop. Our current research indicates that users are accepting of such a system, and it has the potential to be preferred over existing workflows for VR level design. We found that the primary benefit of our system is an improved sense of scale and perspective when creating the geometry and implementing gameplay. The paper also contributes some best practices and lessons learned from creating a complex virtual reality tool, such as LevelEd VR.
    • LiTu - A Human-Computer Interface based on Frustrated Internal Reflection of Light

      Edwards, Marc R.; John, Nigel W.; University of Chester (IEEE Conference Publications, 2015-10)
      We have designed LiTu (Laɪ’Tu - Light Tube) as a customisable and low-cost (ca 30 Euros) human-computer interface. It is composed of an acrylic tube, a ball-bearing mirror, six LEDs and a webcam. Touching the tube causes frustrated internal reflection of light due to a change in the critical angle at the acrylic-skin boundary. Scattered light within the tube is reflected off the mirror into the camera at the opposite end for image processing. Illuminated contact regions in the video frames are segmented and processed to generate 2D information such as: pitch and volume, or x and y coordinates of a graphic. We demonstrate the functionality of LiTu both as a musical instrument and as an interactive computer graphics controller. For example, various musical notes can be generated by touching specific regions around the surface of the tube. Volume can be controlled by sliding a finger down the tube and pitch by sliding the finger radially. We demonstrate the adaptable nature of LiTu’s touch interface and discuss our plans to explore future physical modifications of the device.
    • Traversing social networks in the virtual dance hall: visualizing history in VR

      Southall, Helen; Beever, Lee; Butcher, Peter; University of Chester (IEEE Conference Publications, 2017-09-20)
      Digital recreations of historical sites and events are important tools both for academic researchers and for public interpretation. Current 3D visualization and VR technologies enable these recreations to be increasingly immersive and engaging. This poster describes a case study based on a mid-twentieth century Chester dance hall, examining the possibilities and limitations of 3D VR for recreating a public music venue which no longer physically exists, and also for visualizing and analyzing the professional network of musicians who played there, and at many other local venues.