Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications

Hdl Handle:
http://hdl.handle.net/10034/620701
Title:
Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications
Authors:
Khan, Aamar F.; Down, Michael P.; Smith, Graham C.; Foster, Christopher W.; Banks, Craig E.
Abstract:
Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN) nanosheets are fabricated using the surfactant sodium cholate in aqueous media and are explored towards the electrochemical reduction of oxygen (oxygen reduction reaction) within acidic media for the first time. Large quantifiable voltammetric signatures are observed at significantly reduced potentials compared to traditional graphitic-based electrodes indicating 2D-hBN's possible electrocatalytic activity towards the oxygen reduction reaction, therefore having the potential as a useful electrode platform within fuel cell technology. We also demonstrate, for the first time, that surfactant-exfoliated 2D-hBN is an effective electrochemical supercapacitor material with a specific capacitance value of up to 1745 F g-1. A full analysis of the electrochemical properties of 2D-hBN is performed, including the application of a novel capacitive circuit applied to galvanostatic charge/discharge analysis, which provides an unambiguous analysis of the capacitance of the 2D-hBN. Furthermore, a diverse range of methods are introduced and utilised to calculate the specific capacitance, a substantially overlooked and misinterpreted parameter within the literature allowing standardisation in the academic literature to be achieved. In both examples, we demonstrate through control experiments in the form of surfactant modified graphite electrodes, sodium cholate is the major contributing factor to the aforementioned electrocatalytic and capacitive behaviour, which has yet to be reported.
Affiliation:
University of Chester; Manchester Metropolitan University
Citation:
Khan A. F., Down, M. P., Smith, G. C., Foster, C. W., & Banks, C. E. (2017). Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. Journal of Materials Chemistry A, 5, 4103-4113. DOI: 10.1039/C6TA09999H
Publisher:
Royal Society of Chemistry
Journal:
Journal of Materials Chemistry A
Publication Date:
2-Feb-2017
URI:
http://hdl.handle.net/10034/620701
DOI:
10.1039/c6ta09999h
Additional Links:
http://pubs.rsc.org/en/Content/ArticleLanding/2017/TA/C6TA09999H#!divAbstract
Type:
Article
Language:
en
EISSN:
2050-7496
Appears in Collections:
Natural Sciences

Full metadata record

DC FieldValue Language
dc.contributor.authorKhan, Aamar F.en
dc.contributor.authorDown, Michael P.en
dc.contributor.authorSmith, Graham C.en
dc.contributor.authorFoster, Christopher W.en
dc.contributor.authorBanks, Craig E.en
dc.date.accessioned2017-11-03T13:52:58Z-
dc.date.available2017-11-03T13:52:58Z-
dc.date.issued2017-02-02-
dc.identifier.citationKhan A. F., Down, M. P., Smith, G. C., Foster, C. W., & Banks, C. E. (2017). Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. Journal of Materials Chemistry A, 5, 4103-4113. DOI: 10.1039/C6TA09999Hen
dc.identifier.doi10.1039/c6ta09999h-
dc.identifier.urihttp://hdl.handle.net/10034/620701-
dc.description.abstractSurfactant-exfoliated 2D hexagonal boron nitride (2D-hBN) nanosheets are fabricated using the surfactant sodium cholate in aqueous media and are explored towards the electrochemical reduction of oxygen (oxygen reduction reaction) within acidic media for the first time. Large quantifiable voltammetric signatures are observed at significantly reduced potentials compared to traditional graphitic-based electrodes indicating 2D-hBN's possible electrocatalytic activity towards the oxygen reduction reaction, therefore having the potential as a useful electrode platform within fuel cell technology. We also demonstrate, for the first time, that surfactant-exfoliated 2D-hBN is an effective electrochemical supercapacitor material with a specific capacitance value of up to 1745 F g-1. A full analysis of the electrochemical properties of 2D-hBN is performed, including the application of a novel capacitive circuit applied to galvanostatic charge/discharge analysis, which provides an unambiguous analysis of the capacitance of the 2D-hBN. Furthermore, a diverse range of methods are introduced and utilised to calculate the specific capacitance, a substantially overlooked and misinterpreted parameter within the literature allowing standardisation in the academic literature to be achieved. In both examples, we demonstrate through control experiments in the form of surfactant modified graphite electrodes, sodium cholate is the major contributing factor to the aforementioned electrocatalytic and capacitive behaviour, which has yet to be reported.en
dc.language.isoenen
dc.publisherRoyal Society of Chemistryen
dc.relation.urlhttp://pubs.rsc.org/en/Content/ArticleLanding/2017/TA/C6TA09999H#!divAbstracten
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.subjectBoron nitrideen
dc.subjectElectrochemistryen
dc.subjectXPSen
dc.subjectTEMen
dc.titleSurfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applicationsen
dc.typeArticleen
dc.identifier.eissn2050-7496-
dc.contributor.departmentUniversity of Chester; Manchester Metropolitan Universityen
dc.identifier.journalJournal of Materials Chemistry Aen
dc.date.accepted2017-01-18-
or.grant.openaccessYesen
rioxxterms.funderUnfundeden
rioxxterms.identifier.projectUnfundeden
rioxxterms.versionAMen
rioxxterms.licenseref.startdate2018-02-02-
This item is licensed under a Creative Commons License
Creative Commons
All Items in ChesterRep are protected by copyright, with all rights reserved, unless otherwise indicated.