A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations

Hdl Handle:
http://hdl.handle.net/10034/576769
Title:
A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations
Authors:
Karakatsani, Fotini
Abstract:
We derive optimal order a posteriori error estimates for fully discrete approximations of initial and boundary value problems for linear parabolic equations. For the discretisation in time we apply the fractional-step #-scheme and for the discretisation in space the finite element method with finite element spaces that are allowed to change with time.
Affiliation:
University of Chester
Citation:
Karakatsani, F. (2015). A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations. IMA Journal of Numerical Analysis, 36(3), 1334-1361. http:// doi:10.1093/imanum/drv035
Publisher:
Oxford University Press
Journal:
IMA Journal of Numerical Analysis
Publication Date:
20-Jul-2015
URI:
http://hdl.handle.net/10034/576769
DOI:
10.1093/imanum/drv035
Additional Links:
http://imanum.oxfordjournals.org/lookup/doi/10.1093/imanum/drv035; http://imajna.oxfordjournals.org/cgi/reprint/drv035? ijkey=bXLZBoCgxImq0GD&keytype=ref
Type:
Article
Language:
en
Description:
This is a pre-copyedited, author-produced PDF of an article accepted for publication in IMA Journal of Numerical Analysis following peer review. The version of record A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations is available online at:http://imajna.oxfordjournals.org/content/early/2015/07/20/imanum.drv035.abstract?sid=ab7d6b71-cb35-42ed-896f-f009b1fdc99e
ISSN:
0272-4979; 1464-3642
Appears in Collections:
Mathematics

Full metadata record

DC FieldValue Language
dc.contributor.authorKarakatsani, Fotinien
dc.date.accessioned2015-09-03T13:26:01Zen
dc.date.available2015-09-03T13:26:01Zen
dc.date.issued2015-07-20en
dc.identifier.citationKarakatsani, F. (2015). A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations. IMA Journal of Numerical Analysis, 36(3), 1334-1361. http:// doi:10.1093/imanum/drv035en
dc.identifier.issn0272-4979en
dc.identifier.issn1464-3642en
dc.identifier.doi10.1093/imanum/drv035en
dc.identifier.urihttp://hdl.handle.net/10034/576769en
dc.descriptionThis is a pre-copyedited, author-produced PDF of an article accepted for publication in IMA Journal of Numerical Analysis following peer review. The version of record A posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equations is available online at:http://imajna.oxfordjournals.org/content/early/2015/07/20/imanum.drv035.abstract?sid=ab7d6b71-cb35-42ed-896f-f009b1fdc99een
dc.description.abstractWe derive optimal order a posteriori error estimates for fully discrete approximations of initial and boundary value problems for linear parabolic equations. For the discretisation in time we apply the fractional-step #-scheme and for the discretisation in space the finite element method with finite element spaces that are allowed to change with time.en
dc.language.isoenen
dc.publisherOxford University Pressen
dc.relation.urlhttp://imanum.oxfordjournals.org/lookup/doi/10.1093/imanum/drv035en
dc.relation.urlhttp://imajna.oxfordjournals.org/cgi/reprint/drv035? ijkey=bXLZBoCgxImq0GD&keytype=refen
dc.rightsArchived with thanks to IMA Journal of Numerical Analysisen
dc.subjecta posteriori error estimatesen
dc.subjectfractional-step ϑ-schemeen
dc.subjectlinear parabolic equationen
dc.titleA posteriori error estimates for fully discrete fractional-step ϑ-approximations for parabolic equationsen
dc.typeArticleen
dc.contributor.departmentUniversity of Chesteren
dc.identifier.journalIMA Journal of Numerical Analysisen
This item is licensed under a Creative Commons License
Creative Commons
All Items in ChesterRep are protected by copyright, with all rights reserved, unless otherwise indicated.