Hdl Handle:
http://hdl.handle.net/10034/559535
Title:
Torsion Units for Some Almost Simple Groups
Authors:
Gildea, Joe
Abstract:
We prove that the Zassenhaus conjecture is true for $Aut(PSL(2,11))$. Additionally we prove that the Prime graph question is true for $Aut(PSL(2,13))$.
Affiliation:
University of Chester
Citation:
Gildea, J. (2016). Torsion units for some almost simple groups. Czechoslovak Mathematical Journal, 66(2), 561-574. DOI: 10.1007/s10587-016-0275-9
Publisher:
Springer
Journal:
Czechoslovak Mathematical Journal
Publication Date:
25-Jun-2016
URI:
http://hdl.handle.net/10034/559535
DOI:
10.1007/s10587-016-0275-9
Type:
Article
Language:
en
Description:
The final publication is available at Springer via http://dx.doi.org/10.1007/s10587-016-0275-9
ISSN:
0011-4642
EISSN:
1572-9141
Appears in Collections:
Mathematics

Full metadata record

DC FieldValue Language
dc.contributor.authorGildea, Joeen
dc.date.accessioned2015-07-10T13:45:16Zen
dc.date.available2015-07-10T13:45:16Zen
dc.date.issued2016-06-25en
dc.identifier.citationGildea, J. (2016). Torsion units for some almost simple groups. Czechoslovak Mathematical Journal, 66(2), 561-574. DOI: 10.1007/s10587-016-0275-9en
dc.identifier.issn0011-4642en
dc.identifier.doi10.1007/s10587-016-0275-9-
dc.identifier.urihttp://hdl.handle.net/10034/559535en
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/10.1007/s10587-016-0275-9-
dc.description.abstractWe prove that the Zassenhaus conjecture is true for $Aut(PSL(2,11))$. Additionally we prove that the Prime graph question is true for $Aut(PSL(2,13))$.en
dc.language.isoenen
dc.publisherSpringeren
dc.subjectZassenhaus Conjectureen
dc.subjecttorsion uniten
dc.subjectpartial augmentationen
dc.subjectintegral group ringen
dc.titleTorsion Units for Some Almost Simple Groupsen
dc.typeArticleen
dc.identifier.eissn1572-9141en
dc.contributor.departmentUniversity of Chesteren
dc.identifier.journalCzechoslovak Mathematical Journalen
This item is licensed under a Creative Commons License
Creative Commons
All Items in ChesterRep are protected by copyright, with all rights reserved, unless otherwise indicated.