• An Analysis of Virtual Team Characteristics: A Model for Virtual Project Managers

      Cormican, Kathryn; Morley, Sandra; Folan, Paul; College of Engineering & Informatics, National University of Ireland, Galway. Ireland. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon UK United Kingdom. (Facultad de Economía y Negocios, Universidad Alberto Hurtado, 2015-04)
      An integrated model, created to guide project managers, is outlined for the implementation and management of virtual teams. This model is developed by means of an exploratory literature review and an empirical investigation of virtual team utilization in a multinational medical device manufacturer, which examines several factors critical to their success. A TOWS matrix is used to structure the results of the analysis and to identify future virtual team strategies for the organization. The study demonstrates that a structured approach is essential to ensure that the benefits resulting from virtual teamwork are maximized.
    • An Analytical and Numerical Study of Magnetic Spring Suspension with Energy Recovery Capabilities

      Jia, Yu; Li, Shasha; Shi, Yu; University of Chester; China National Intellectual Property Administration (MDPI, 2018-11-12)
      As the automotive paradigm shifts towards electric, limited range remains a key challenge. Increasing the battery size adds weight, which yields diminishing returns in range per kilowatt-hour. Therefore, energy recovery systems, such as regenerative braking and photovoltaic cells, are desirable to recharge the onboard batteries in between hub charge cycles. While some reports of regenerative suspension do exist, they all harvest energy in a parasitic manner, and the predicted power output is extremely low, since the majority of the energy is still dissipated to the environment by the suspension. This paper proposes a fundamental suspension redesign using a magnetically-levitated spring mechanism and aims to increase the recoverable energy significantly by directly coupling an electromagnetic transducer as the main damper. Furthermore, the highly nonlinear magnetic restoring force can also potentially enhance rider comfort. Analytical and numerical models have been constructed. Road roughness data from an Australian road were used to numerically simulate a representative environment response. Simulation suggests that 10’s of kW to >100 kW can theoretically be generated by a medium-sized car travelling on a typical paved road (about 2–3 orders of magnitude higher than literature reports on parasitic regenerative suspension schemes), while still maintaining well below the discomfort threshold for passengers (<0.315 m/s2 on average).
    • Automated retrieval and comparison of sheet metal parts

      Yang, Yang; Hinduja, Srichand; Owudunni, Oladele O.; University of Manchester; University of Chester (Taylor & Francis, 2023-01-16)
      With the number of 3D CAD models increasing rapidly, retrieving models of similar parts has become an important activity as existing designs may contain vital information regarding design and manufacturing. This paper is targeted at retrieving and comparing sheet metal parts. In the method proposed herein, the general shape of a sheet metal part is represented by a simplified hierarchical tree wherein the nodes represent the planar walls of the part and feature-related information is attached to these nodes as textual attributes. A shape index is derived from this simplified tree and subsequently used to retrieve similar parts from the database. The retrieved parts are assessed for their similarity with the enquiry part using five criteria: the general shape of the part, bends and their direction, feature types, feature location and feature size. In addition to determining the degree of similarity, the main advantage of the proposed method is that the assessment provides useful feedback to design and manufacturing engineers based on these five criteria. A prototype system developed in C++ has been tested on a database containing a few hundred parts and the effectiveness of the proposed method in retrieving and comparing the parts is discussed.
    • Cantilevers-on-membrane design for broadband MEMS piezoelectric vibration energy harvesting

      Jia, Yu; Du, Sijun; Seshia, Ashwin A.; University of Chester; University of Cambridge (IOP Publishing, 2015-12-01)
      Most MEMS piezoelectric vibration energy harvesters involve either cantilever-based topologies, doubly-clamped beams or membrane structures. While these traditional designs offer simplicity, their frequency response for broadband excitation are typically inadequate. This paper presents a new integrated cantilever-on-membrane design that attempts to both optimise the strain distribution on a piezoelectric membrane resonator and improve the power responsiveness of the harvester for broadband excitation. While a classic membrane-based resonator has the potential to theoretically offer wider operational frequency bandwidth than its cantilever counterpart, the addition of a centred proof mass neutralises its otherwise high strain energy regions. The proposed topology addresses this issue by relocating the proof mass onto subsidiary cantilevers and integrates the merits of both the membrane and the cantilever designs. When experimentally subjected to a band-limited white noise excitation, up to approximately two folds of power enhancement was observed for the new membrane harvester compared to a classic plain membrane device.
    • Comparison of Performance of Alternative Post Combustion Carbon Capture Processes for a Biogas Fueled Micro Gas Turbine

      Font-Palma, Carolina; Lychnos, George; Nikpey Somehsaraei, Homam; Willson, Paul; Assadi, Mohsen; University of Chester; University of Stavanger; PMW Technology Limited, Chester (American Society of Mechanical Engineers, 2021-01-11)
      The urgent need to decrease greenhouse gases (GHG) has prompted countries such as the UK and Norway to commit to net zero emissions by 2050 and 2030, respectively. One of the sectors contributing to GHG emissions is agriculture, by approximately 10% in the EU in 2017. GHG reductions in the production side should involve avoidance at source, reduction of emissions and/or removal of those emissions, with the potential for negative emissions by carbon capture. This paper focuses on the utilisation of agricultural waste that can be converted into biogas, such as livestock and crops residues which represent around 37% of GHG emissions by agriculture in the EU. The biogas can be used to produce electricity and heat in a micro gas turbine (MGT). Then, the exhaust gases can be sent to a carbon capture plant. This offers the potential for integration of waste into energy for in-house use in farms and fosters a circular-bioeconomy, where the captured CO2 could be used in greenhouses to grow vegetables. This could even allow the integration of other renewable technologies, since the MGT offers flexible operation for rapid start-up and shut down or intermittency of other technologies such as solar or wind. Current carbon capture processes are very costly at the smaller scales typical of remote communities. The alternative A3C (advanced cryogenic carbon capture) process is much more economical at smaller scales. The A3C separates CO2 from process gas that flows counter-currently with a cold moving bed, where the CO2 desublimes on the surface of bed material as a thin layer of frost. This allows enhanced heat transfer and avoids heavy build-up of frost that reduces severely the heat transfer. The phase change separation process employed by A3C and the large thermal inertia of the separation medium gives good flexibility of capture for load changes and on-off despatch. This study integrates a combined heat and power MGT, Turbec T100, of 100 kWe output. This include developed models for the MGT using characteristics maps for the compressor and turbine and for the cryogenic carbon capture plant, using two software tools, IPSEpro and Aspen Plus, respectively.
    • A Compensation Method for Active Phased Array Antennas : Using a Strain-Electromagnetic Coupling Model

      Shi, Yu; Wang, Congsi; Wang, Yan; Yuan, Shuai; Duan, Baoyan; Lian, Peiyuan; Xue, Song; Du, Biao; Gao, Wei; Wang, Zhihai; et al.
      Physical deformation due to service loads seriously degrades the electromagnetic performance of active phased array antennas. However, traditional displacement-based compensation methods are moderately difficult to use because displacement measurements generally require stable references, which are hard to realize for antennas in service. For deformed antennas, strain information is directly related to their displacement, and strain sensors can overcome carrier platform constraints to measure real-time strain without affecting the antenna radiation-field distribution. We thus present a compensation method based on strain information for in-service antennas. First, the minimum number of strain sensors is determined as the main modal-order-based modal effective mass fraction. According to the modal method and analysis of spatial phase-distribution errors related to strain, a coupled strain-electromagnetic model is established to evaluate antenna performance from the measured strain. The corresponding excitation phase from the measured strain is adjusted to compensate antenna performance. Finally, the method is experimentally validated using an X-band active phased array antenna under the influence of typical deformation conditions for both boresightand scanned beams. The results demonstrate that the presented method can effectively compensate for the performance of service antennas directly from the measured strain information.
    • Computational and Experimental Study on the Resistance Welding Process of a Glass Fibre-Reinforced Epoxy-Based Composite with Thermoplastic Interlayer Adherent

      Liang, Yunhao; Shi, Yu; University of Chester; University of Leeds (Wiley, 2024-01-11)
      In this work, resistance welding of a glass fibre-reinforced epoxy composite (GFRC) was studied with numerical optimisation and experimental validation. A steel mesh and polymethyl methacrylate (PMMA) films were used as the heating element and adherent interlayers, respectively. A transient heat transfer module was implemented to conduct the parametric optimisation study, with variables of electricity power, clamping distance and weld time. The optimal welding condition was then confirmed as 20 W, 0.4 mm and 30 s, with the melting degree of 95.2 %. A thermal meter and a thermal camera validated the simulated temperature results. Welding quality was experimentally characterized by single lap shear tests and scanning electron microscopy (SEM). The highest lap shear strength of 3.8 ± 0.3 MPa was captured on the specimen welded with the optimised condition. This was 76 % that of the benchmark made with adhesive bonding method but it was over 200 times faster.
    • Computational simulation of the damage response for machining long fibre reinforced plastic (LFRP) composite parts: A review

      Wang, Xiaonan; Wang, Fuji; Gu, Tianyu; Jia, Zhenyuan; Shi, Yu; Dalian University of Technology; University of Chester (Elsevier, 2021-01-28)
      Long fibre reinforced plastics (LFRPs) possess excellent mechanical properties and are widely used in the aerospace, transportation and energy sectors. However, their anisotropic and inhomogeneous characteristics as well as their low thermal conductivity and specific heat capacity make them prone to subsurface damage, delamination and thermal damage during the machining process, which seriously reduces the bearing capacity and shortens the service life of the components. To improve the processing quality of composites, finite element (FE) models were developed to investigate the material removal mechanism and to analyse the influence of the processing parameters on the damage. A review of current studies on composite processing modelling could significantly help researchers to understand failure initiation and development during machining and thus inspire scholars to develop new models with high prediction accuracy and computational efficiency as well as a wide range of applications. To this aim, this review paper summarises the development of LFRP machining simulations reported in the literature and the factors that can be considered in model improvement. Specifically, the existing numerical models that simulate the mechanical and thermal behaviours of LFRPs and LFRP-metal stacks in orthogonal cutting, drilling and milling are analysed. The material models used to characterise the constituent phases of the LFRP parts are reviewed. The mechanism of material removal and the damage responses during the machining of LFRP laminates under different tool geometries and processing parameters are discussed. In addition, novel and objective evaluations that concern the current simulation studies are conducted to summarise their advantages. Aspects that could be improved are further detailed, to provide suggestions for future research relating to the simulation of LFRP machining.
    • Connection Configurations to Increase Operational Range and Output Power of Piezoelectric MEMS Vibration Energy Harvesters

      Du, Sijun; Chen, Shao-Tuan; Jia, Yu; Arroyo, Emmanuelle; Seshia, Ashwin A.; University of Cambridge; University of Chester (IOP Publishing, 2016-09-06)
      Among the various methods of extracting energy harvested by a piezoelectric vibration energy harvester, full-bridge rectifiers (FBR) are widely employed due to its simplicity and stability. However, its efficiency and operational range are limited due to a threshold voltage that the open-circuit voltage generated from the piezoelectric transducer (PT) must attain prior to any energy extraction. This voltage linearly depends on the output voltage of the FBR and the forward voltage drop of diodes and the nature of the interface can significantly limit the amount of extracted energy under low excitation levels. In this paper, a passive scheme is proposed to split the electrode of a micromachined PT into multiple (n) equal regions, which are electrically connected in series. The power output from such a series connected MEMS PT allows for the generated voltage to readily overcome the threshold set by the FBR. Theoretical calculations have been performed in this paper to assess the performance for different series stages (n values) and the theory has been experimentally validated. The results show that a PT with more series stages (high n values) improves the efficiency of energy extraction relative to the case with fewer series-connected stages under weak excitation levels.
    • Delamination Detection via Reconstructed Frequency Response Function of Composite Structures

      Shi, Yu; Alsaadi, Ahmed; Jia, Yu; University of Chester (Springer, 2019-07-05)
      Online damage detection technologies could reduce the weight of structures by allowing the use of less conservative margins of safety. They are also associated with high economical benefits by implementing a condition-based maintenance system. This paper presented a damage detection and location technique based on the dynamic response of glass fibre composite laminate structures (frequency response function). Glass fibre composite laminate plates of 200×200×2.64 mm, which had a predefined delamination, were excited using stationary random vibration waves of 500 Hz band-limited noise input at ≈1.5 g. The response of the structure was captured via Micro-ElectroMechanical System (MEMS) accelerometer to detect damage. The frequency response function requires data from damaged structures only, assuming that healthy structures are homogeneous and smooth. The frequency response of the composite structure was then reconstructed and fitted using the least-squares rational function method. Delamination as small as 20 mm was detected using global changes in the natural frequencies of the structure, the delamination was also located with greater degree of accuracy due to local changes of frequency response of the structure. It was concluded that environmental vibration waves (stationary random vibration waves) can be utilised to monitor damage and health of composite structures effectively.
    • Design and finite element simulation of metal-core piezoelectric fiber/epoxy matrix composites for virus detection

      Wang, Yinli; Shi, Yu; Narita, Fumio; Tohoku University; University of Chester
      Undoubtedly, the coronavirus disease 2019 (COVID-19) has received the greatest concern with a global impact, and this situation will continue for a long period of time. Looking back in history, airborne transimission diseases have caused huge casualties several times. COVID-19 as a typical airborne disease caught our attention and reminded us of the importance of preventing such diseases. Therefore, this study focuses on finding a new way to guard against the spread of these diseases such as COVID-19. This paper studies the dynamic electromechanical response of metal-core piezoelectric fiber/epoxy matrix composites, designed as mass load sensors for virus detection, by numerical modelling. The dynamic electromechanical response is simulated by applying an alternating current (AC) electric field to make the composite vibrate. Furthermore, both concentrated and distributed loads are considered to assess the sensitivity of the biosensor during modelling of the combination of both biomarker and viruses. The design parameters of this sensor, such as the resonant frequency, the position and size of the biomarker, will be studied and optimized as the key values to determine the sensitivity of detection. The novelty of this work is to propose functional composites that can detect the viruses from changes of the output voltage instead of the resonant frequency change using piezoelectric sensor and piezoelectric actuator. The contribution of this detection method will significantly shorten the detection time as it avoids fast Fourier transform (FFT) or discrete Fourier transform (DFT). The outcome of this research offers a reliable numerical model to optimize the design of the proposed biosensor for virus detection, which will contribute to the production of high-performance piezoelectric biosensors in the future.
    • Development of laser peening ceramics

      Shukla, Pratik; Lawrence, Jonathan; Waugh, David G.; University of Chester (2015-03)
    • The diagnostic analysis of the fault coupling effects in planet bearing

      Xue, Song; Wang, Congsi; Howard, Ian; Lian, Peiyuan; Chen, Gaige; Wang, Yan; Yan, Yuefei; Xu, Qian; Shi, Yu; Jia, Yu; et al. (Elsevier, 2019-11-09)
      The purpose of this paper is to investigate the fault coupling effects in the planet bearing as well as the corresponding vibration signatures in the resultant vibration spectrum. In a planetary gear application, the planet bearing can not only spin around the planet gear axis, but also revolve about the sun gear axis and this rotating mechanism poses a big challenge for the diagnostic analysis of the planet bearing vibration spectrum. In addition, the frequency component interaction and overlap phenomenon in the vibration spectrum caused by the fault coupling effect can even worsen the diagnosis results. To further the understanding of the fault coupling effects in a planet bearing, a 34° of freedom planetary gear model with detailed planet bearing model was established to obtain the dynamic response in the presence of various bearing fault scenarios. The method of modelling the bearing distributed faults and localized faults has been introduced in this paper, which can be further incorporated into the planetary gear model to obtain the faulted vibration signal. The “benchmark” method has been adopted to enhance the planet bearing fault impulses in the vibration signals and in total, the amplitude demodulation results from 20 planet bearing fault scenarios have been investigated and analyzed. The coherence estimation over the vibration frequency domain has been proposed as a tool to quantify the fault impact contribution from different fault modes and the results suggested that the outer raceway fault contributes most to the resultant planet bearing vibration spectrum in all the investigated fault scenarios.
    • Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy

      Chan, Chi-Wai; Hussain, Issam; Waugh, David G.; Lawrence, Jonathan; Man, Hau-Chung; Queen's University, Belfast ; University of Lincoln ; University of Chester ; University of Chester ; Hong Kong Polytechnic University (Elsevier, 2014-05-22)
      The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy.
    • Effect of surface micro-pits on mode-II fracture toughness of Ti-6Al-4V/PEEK interface

      Pan, Lei; Pang, Xiaofei; Wang, Fei; Huang, Haiqiang; Shi, Yu; Tao, Jie; Nanjing University of Aeronautics and Astronautics; University of Chester (Elsevier, 2019-08-17)
      Herein, the delamination issue of TiGr(TC4/PEEK/Cf) laminate is addressed by investigating the influence of TC4(Ti-6Al-4V) surface micro-pits on mode-II interfacial fracture toughness of TC4/PEEK interface through experimental and finite element modeling. The micro-pits unit cell, unit strip and the end notched flexure (ENF) models are established based on the finite element simulations and the effect of micro-pit size parameters is studied in detail. The results of micro-pits unit cell model reveal that the presence of micro-pits can effectively buffer the interfacial stress concentration under mode-II loading conditions. Furthermore, the micro-pits unit strip model, with different micro-pit sizes, is analyzed to obtain the interface parameters, which are converted and used in the ENF model. Both the unit strip and ENF models conclude that the presence of interfacial micro-pits effectively improves the mode-II fracture toughness. It is worth mentioning that the utilization of converted interface parameters in ENF model avoided the limitation of micro-pit size and reduced the workload. Finally, the experimental and computational ENF results exhibited excellent consistency and confirmed the reliability of the proposed finite element models. The current study provides useful guidelines for the design and manufacturing of high-performance TC4/PEEK interfaces for a wide range of applications.
    • Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna

      Wang, Yan; Wang, Congsi; Lian, Peiyuan; Xue, Sone; Liu, Jing; Gao, Wei; Shi, Yu; Wang, Zhihai; Yu, Kunpeng; Peng, Xuelin; et al.
      Active phased array antennas (APAAs) can suffer from the effects of harsh thermal environments, which are caused by the large quantity of power generated by densely packed T/R modules and external thermal impacts. The situation may be worse in the case of limited room and severe thermal loads, due to heat radiation and a low temperature sink. The temperature field of the antenna can be changed. Since large numbers of temperature-sensitive electronic components exist in T/R modules, excitation current output can be significantly affected and the electromagnetic performance of APAAs can be seriously degraded. However, due to a lack of quantitative analysis, it is difficult to directly estimate the effect of temperature on the electromagnetic performance of APAAs. Therefore, this study investigated the electromagnetic performance of APAAs as affected by two key factors—the uniformly distributed temperature field and the temperature gradient field—based on different antenna shapes and sizes, to provide theoretical guidance for their thermal design.
    • Effects of inkjet printed toughener on delamination suppression in drilling of carbon fibre reinforced plastics (CFRPs)

      Shi, Yu; Wang, Xiaonan; Wang, Fuji; Gu, Tianyu; Xie, Pengheng; Jia, Yu; University of Chester; Dalian University of Technology; Aston University
      Delamination has been recognised as the predominant damage induced during the drilling of carbon fibre reinforced plastics (CFRPs). It could significantly reduce the bearing capacity and shorten the service life of the designed component. To enhance the delamination resistance of CFRPs for different applications, great affords have been done to improve their interlaminar fracture toughness. However, due to the difficulty in accurately controlling the amount of the toughener applied in the interface, effect of the toughener content on the toughening efficiency is rarely studied. In this work, an experimental research was developed to investigate the performance of the toughener on the improvement of delamination resistance in the drilling of CFRPs and parametrically optimise the toughener content with the consideration of different feed rates. Specifically, poly(methyl methacrylate) (PMMA) solutions with various concentrations were selected to add on the CFRP prepreg, and co-cured together with layups. The inkjet printing technology was adopted to deposit the PMMA solutions for precisely controlled toughener contents. Through drilling experiments on the toughened CFRPs, it was found that the optimal content of the PMMA solution was 10 wt% to offer the least delamination, in particular, for the situation under the highest feed rate condition. The toughing mechanisms were also concluded by analysing the histories of the thrust force and torque in the drilling process. The results of this study is significantly contribute to the locally toughening of the composite interfaces and the improvement of the drilling quality, which is specifically helpful to strengthen the joint property for the structural design stage for the aircraft.
    • An Efficient Inductor-less Dynamically Configured Interface Circuit for Piezoelectric Vibration Energy Harvesting

      Du, Sijun; Jia, Yu; Seshia, Ashwin A.; University of Cambridge; University of Chester (IEEE, 2016-07-07)
      Vibration energy harvesting based on piezoelectric materials is of interest in several applications such as in powering remote distributed wireless sensor nodes for structural health monitoring. Synchronized Switch Harvesting on Inductor (SSHI) and Synchronous Electric Charge Extraction (SECE) circuits show good power efficiency among reported power management circuits; however, limitations exist due to inductors employed, adaption of response to varying excitation levels and the Synchronized Switch Damping (SSD) effect. In this paper, an inductor-less dynamically configured interface circuit is proposed, which is able to configure the connection of two piezoelectric materials in parallel or in series by periodically evaluating the ambient excitation level. The proposed circuit is designed and fabricated in a 0:35 μm HV CMOS process.The fabricated circuit is co-integrated with a piezoelectric bimorph energy harvester and the performance is experimentally validated. With a low power consumption (0:5 μW), the measured results show that the proposed rectifier can provide a 4.5 boost in harvested energy compared to the conventional full-bridge rectifier without employing an inductor. It also shows a high power efficiency over a wide range of excitation levels and is less susceptible to SSD.
    • An Efficient SSHI Interface With Increased Input Range for Piezoelectric Energy Harvesting Under Variable Conditions

      Du, Sijun; Jia, Yu; Do, Cuong D.; Seshia, Ashwin A.; University of Cambridge; University of Chester (IEEE, 2016-08-10)
      Piezoelectric vibration energy harvesters have been widely researched and are increasingly employed for powering wireless sensor nodes. The synchronized switch harvesting on inductor (SSHI) circuit is one of the most efficient interfaces for piezoelectric vibration energy harvesters. However, the traditional incarnation of this circuit suffers from a significant start-up issue that limits operation in low and variable amplitude vibration environments. This paper addresses this start-up issue for the SSHI rectifier by proposing a new architecture with SSHI startup circuitry. The startup circuitry monitors if the SSHI circuit is operating correctly and re-starts the SSHI interface if required. The proposed circuit is comprehensively analyzed and experimentally validated through tests conducted by integrating a commercial piezoelectric vibration energy harvester with the new interface circuit designed in a 0.35-μm HV CMOS process. Compared to conventional SSHI rectifiers, the proposed circuit significantly decreases the required minimum input excitation amplitude before energy can be harvested, making it possible to extract energy over an increased excitation range.
    • Eight parametric resonances in a multi-frequency wideband MEMS piezoelectric vibration energy harvester

      Jia, Yu; Du, Sijun; Seshia, Ashwin A.; University of Cambridge; University of Chester (IEEE, 2016-01-24)
      This paper presents a multi-order parametric resonant MEMS piezoelectric disk membrane, for the purpose of broadening the operational frequency bandwidth of a vibration energy harvester by employing the nonlinearity-induced bandwidth broadening associated with this phenomenon as well as the multi-frequency response associated with the higher orders. The fundamental mode -3dB bandwidth at 2.0 g recorded 55 Hz, while the first parametric resonant peak exhibited 365 Hz and the -3dB of the first 8 orders accumulated to 604 Hz. The membrane parametric resonator also experimentally demonstrated over 3-folds improvement in power density compared to a conventional direct resonator (cantilever), when subjected to band-limited white noise.