The validity of predicting $\dot{V}O_{2\text{max}}$ from perceptually regulated treadmill exercise.

“Dissertation submitted in accordance with the requirements of University of Chester for the degree of Master of Science”

June 2008

Word count: Introduction: 9,119, Method: 2,923, Results: 1,801: Discussion: 3,636, Total: 17,479
DISSERTATION AUTHOR CONSENT FORM

AUTHOR:

TITLE:

AUTHOR’S DECLARATION

I agree that this dissertation shall be available for reading in accordance with the regulations governing the use of University of Chester dissertations.

SIGNATURE ___________________________ DATE ___________________________
The validity of predicting $\dot{V}O_{2\text{max}}$ from perceptually regulated treadmill exercise.

Abstract

John Hayton

Objective: The purpose of this study was to assess the validity of predicting $\dot{V}O_{2\text{max}}$ from sub-maximal $V\dot{O}_2$ values elicited during perceptually-regulated treadmill exercise tests.

Methods: Eleven males and seven females with a mean age of 21.7 (±2.8) years completed three identical sub-maximal, perceptually-guided graded exercise tests (PGXTs) on a motorised treadmill and a final maximal graded exercise test (GXT) to establish $V_{O2\text{max}}$. Participants performed testing over a ten day period, allowing for two days rest between tests. When performing the PGXTs participants were required to produce intensities corresponding to levels 9, 11, 13 and 15 on Borg’s 6-20 ratings of perceived exertion (RPE) scale, in that order. Each RPE production level was performed for three minutes, measurements of $V\dot{O}_2$ and heart rate were measured continuously and recorded in the final 30 seconds of each level. The Bruce protocol was selected for the maximal GXT ($\dot{V}O_{2\text{maxGXT}}$). Individual linear regression relationships between RPE and $V\dot{O}_2$ for the RPE ranges of 9-15, 9-13 and 9-11 were extrapolated to both RPE$_{19}$ and RPE$_{20}$.

Results: For the RPE range 9-15 prediction accuracy improved with practice across consecutive trials reporting 50.0±10.1, 49.1±8.1, and 47.3±6.9 ml·kg$^{-1}$·min$^{-1}$ for trials 1, 2 and 3 respectively, as the actual mean $V\dot{O2}_{\text{max}}$ reported was 48.0±6.2. The third and final trial produced the best LoA between predicted and actual $V\dot{O2}_{\text{max}}$ of -0.6±7.1 ml·kg$^{-1}$·min$^{-1}$, therefore achieving a worst case scenario range of 6.5 ml·kg$^{-1}$·min$^{-1}$ below the criterion $V\dot{O2}_{\text{max}}$ score and 7.7 ml·kg$^{-1}$·min$^{-1}$ above. Consistency soundly improved between trials reporting LoA of 0.90±12.3 between trial 1 and 2, and 1.72±8.50 between 2 and 3. However, the RPE ranges 9-11 and 9-13 decreased in accuracy and consistency from consecutive trials and thus reported considerably less favourable LoA analyses. The closest predictions to actual $V\dot{O2}_{\text{max}}$ when using the 9-13 and 9-11 range were generated from the first trial, providing poor worst case scenario ranges of 18.6 – 18.9 ml·kg$^{-1}$·min$^{-1}$ and 16.9 – 32.2 ml·kg$^{-1}$·min$^{-1}$, respectively.

Conclusions: The data suggest that a sub-maximal, perceptually-guided, graded treadmill exercise protocol can provide acceptable estimates of $V\dot{O2}_{\text{max}}$ when employing a perceptual range including at least a high order RPE of 15. Estimates are further improved with practice in young, healthy individuals. The poor predictive performance when using the RPE ranges 9-11 and 9-13 were attributed to less apparent sensations of exertion.

Key words: Ratings of Perceived Exertion (RPE) · Perceptual-Regulation · $V\dot{O2}_{\text{max}}$

Production Paradigm · Exercise Test
Declaration

This work is original and has not been previously submitted in support of a Degree, qualification or other course.

Signed ..

Date ..
I would like to take this opportunity to thank Mike Morris for his direction and supervisory expertise.

I am also deeply grateful to all the participants who gave up their time on four separate occasions to undertake the gruelling procedures requested of them.

Special thanks are reserved for my family whose unwavering support made this whole experience possible.
List of Contents

Dissertation Author Consent Form
Abstract
Declaration
Acknowledgements

CHAPTER 1: INTRODUCTION & LITERATURE REVIEW

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1.1</td>
<td>Perceived Exertion</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Rationale for Study</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Aim</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Hypothesis</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Literature Review</td>
<td>7</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Ratings of Perceived Exertion and the Borg RPE Scale</td>
<td>7</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Use of RPE in Exercise Prescription</td>
<td>7</td>
</tr>
<tr>
<td>1.5.3</td>
<td>RPE Mode</td>
<td>10</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Validity and Reliability of the RPE Scale of Regulating Exercise Intensity when Employed in an Estimation-Production Paradigm</td>
<td>11</td>
</tr>
<tr>
<td>1.5.5</td>
<td>The validity and reliability of prescribing safe and effective exercise by predicting maximal oxygen uptake ($\dot{V}O_{2\text{max}}$) from an RPE Production mode</td>
<td>13</td>
</tr>
<tr>
<td>1.5.6</td>
<td>Exercise Mode</td>
<td>24</td>
</tr>
</tbody>
</table>

CHAPTER 2: METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Methods</td>
<td>38</td>
</tr>
<tr>
<td>2.1</td>
<td>Participants</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Experimental Design</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>Exercise Testing</td>
<td>40</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Phase I: Measurements taken on arrival.</td>
<td>41</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Phase II: Treadmill protocol and measurements.</td>
<td>42</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Phase III: Supervised cool down and participant observation to ensure safe recovery.</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>Measurement Procedures</td>
<td>44</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Stature (Height) Measurement</td>
<td>44</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Mass Measurement</td>
<td>44</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Auscultation – Brachial Pressure Measurement (Blood Pressure)</td>
<td>45</td>
</tr>
</tbody>
</table>
2.4.4 Gas Calibration and Analysis 45
2.5 Procedures 46
2.6.1 Test Procedures 46
2.6.2 Graded Treadmill protocols 47
2.7 Statistical Analyses 50

CHAPTER 3: RESULTS 53
3.0 Results 54
3.1 Main and Interaction Effects 54
3.2 Limits of Agreement 60

CHAPTER 4: DISCUSSION 68
4.0 Discussion 69
4.1 Oxygen Uptake and RPE 69
4.2 Trends found between Heart Rate and RPE 71
4.3 Interpreting the Limits of Agreement (LoA) by the “worst case scenario approach”. 73
4.4 Analysis of Correlation coefficients 80
4.5 Familiarisation with the RPE Scale and Test Protocol: Trends in Habituation. 81
4.6 Limitations of the study 82
4.6 Implications for RPE Guided Exercise Prescription 84
4.7 Recommendations for Future Research 85
4.8 Conclusion 86

REFERENCES 88

Primary References 89
Secondary References 94

APPENDICES 95

Appendix A – Participant information sheet 96
Appendix B – Consent Form 99
Appendix C – Pre-test Questionnaire 100
Appendix D – Instructions for the Perceptual Regulation of Exercise Using Borg’s R.P.E. Scale 102
Appendix E – Data collection sheet - VO2 production testing
Appendix F – Data collection sheet - $\hat{\text{VO}_2\text{maxGXT}}$
Appendix G – Raw Data – Oxygen Uptake
Appendix H – Raw Data – Heart Rate
Appendix I – Linearly Regressed Production Trial Predictions, Actual $\hat{\text{VO}_2\text{max}}$ values, and Trial-to-Trial Prediction Differences
Appendix J – Example of Linear Regression Analysis procedure
Appendix K – Example of Procedures Performed to Determine Limits of Agreement & Pearson Correlations
Appendix L – Example of Procedures Performed to Determine Intraclass Correlation Coefficients as a Measure of Trial to-Trial Consistency
List of Tables

Table 2.1. Speed to Gradient ratios which elicited the recommended step changes in oxygen cost (MET) at each self-regulated RPE range. Gradient regulated in unison with speed.

Table 3.1 Predicted mean $\dot{V}_{O_{2max}}$ values from production trials and the mean GXT ($\dot{V}_{O_{2max}}$, ml·kg$^{-1}$·min$^{-1}$) at each RPE level and trial. (R demonstrates Pearson correlation coefficients).

Table 3.2 Oxygen uptakes (ml·kg$^{-1}$·min$^{-1}$ and % $\dot{V}_{O_{2max}}$) at each RPE level (9-15) across three production trials.

Table 3.3 Prediction of $\dot{V}_{O_{2max}}$ from 3 all production trials, predicted from RPE 9-15.

Table 3.4 Prediction of $\dot{V}_{O_{2max}}$ from 3 all production trials, predicted from RPE 9-13.

Table 3.5 Prediction of $\dot{V}_{O_{2max}}$ from 3 all production trials, predicted from RPE 9-11.

Table 3.6 95% LoA (expressed in ml·kg$^{-1}$·min$^{-1}$) (bias ± 1.96xSDdiff) for comparisons of actual and predicted $\dot{V}_{O_{2max}}$ values.

Table 3.7 Analysis of the consistency of $\dot{V}_{O_{2max}}$ predictions over three production trials using the full range of RPE: $\dot{V}_{O_{2}}$ values (9-15), and the limited perceptual range of RPE 9-11.

Table 4.1 Summary of the relationship between mean maximal oxygen uptake (ml·kg$^{-1}$·min$^{-1}$) at respective RPE levels. Recommended % $\dot{V}_{O_{2max}}$ (ml·kg$^{-1}$·min$^{-1}$) range in relation to each RPE Level is provided.

Table 4.2 Summary of the relationship between mean heart rate (HR) at respective RPE levels. Recommended % HR$_{max}$ (bpm) range in relation to each RPE Level is provided.

Table 4.3 Outlines previous, similar themed studies, providing comparative protocol, LoA and “worst case scenario” information.

Table 4.4 Comparative analysis of the consistency of $\dot{V}_{O_{2max}}$ predictions over three production trials using the full ranges of RPE adopted within the current study (RPE 9-15) and that of Eston et al. (2005).

List of Figures

Figure 1.1 Borg’s 6 – 20 RPE scale illustrating the perceptual anchors assigned to varying degrees of exercise intensity (Borg, 1998).

Figure 2.1 Illustrates the reciprocal speed by gradient increments in workload by which to regulate participant intensity and conform to recommended MET ranges (values plotted from figures shown in table 2.1).

Figure 3.1 Mean oxygen uptake (ml·kg\(^{-1}\)·min\(^{-1}\)) at each RPE level across three production trials (mean ± s). ‘X’ indicates positional and directional trend of linearly predicted \(\dot{V}_O_{2\text{max}}\).

Figure 3.2 Linear relationship between mean oxygen uptake (ml·kg\(^{-1}\)·min\(^{-1}\)) and mean Heart Rate (bpm) with incremental RPE levels (9, 11, 13, 15) across the three production trials. ‘X’ indicates positional and directional trend of linearly predicted \(\dot{V}_O_{2\text{max}}\).

Figure 3.3 Maximal oxygen uptake (ml·kg\(^{-1}\)·min\(^{-1}\)) in the graded exercise test and maximal predicted oxygen uptake values (ml·kg\(^{-1}\)·min\(^{-1}\)) from three perceptual ranges across three production trials (mean ± s). *Significantly lower than in the graded exercise test.

Figure 3.4 95% LoA comparisons between trial 1 \(\dot{V}_{O_{2\text{max}}}\) predictions (using RPE range 9-15) and actual \(\dot{V}_{O_{2\text{max}}}\).

Figure 3.5 95% LoA comparisons between trial 2 \(\dot{V}_{O_{2\text{max}}}\) predictions (using RPE range 9-15) and actual \(\dot{V}_{O_{2\text{max}}}\).

Figure 3.6 95% LoA comparisons between trial 3 \(\dot{V}_{O_{2\text{max}}}\) predictions (using RPE range 9-15) and actual \(\dot{V}_{O_{2\text{max}}}\).