Hsp72
translocation and secretion
in in vivo and in vitro models

Thesis submitted in accordance with the requirements
of the University of Liverpool
for the degree of Doctor of Philosophy by

Francesca Leoni

March 2009
University of Liverpool
Hsp72
translocation and secretion
in \textit{in vivo} and \textit{in vitro} models

Thesis submitted in accordance with the requirements
of the University of Liverpool
for the degree of Doctor of Philosophy by

Francesca Leoni

March 2009
University of Liverpool

Part 2 of 2
Declaration

The work presented in this thesis is original and has not been submitted previously in support of any qualification or course.

Signed

Date
Acknowledgements

First of all I would like to acknowledge my first supervisor Prof. John Williams my second supervisor Prof. Sarah Andrew for the support given to me throughout all these years here in Chester.

To John, I won’t forget the great chance you gave me and all the support you have given me. Thank you!

I would like to remember and acknowledge every people that worked in the lab and around it: Ola, Helen, Nina, Ian, Neil, Gareth, the technicians: thanks for sharing with me the good and the bad things that happens everyday in the lab.

Thank you in particular to Elyse Ireland and Rob Coleman, the best master I could have had!

Thank you to Alison and Winnie for let me feel always at home and for all the great support you gave me.

Grazie a tutta la mia famiglia così bella e unita, per avermi fatto sentire a casa anche se lontana.

Grazie a Babbo e Mamma per volermi bene incondizionatamente.

Grazie a Giambattista, tu più di tutti sai quanto questo lavoro conta per me. Grazie di essere ogni giorno accanto a me.
Abstract

Evidence suggesting that Hsp72 is actively participating in cellular signalling as well interacting with immune system dynamics has been increasing. This is true in healthy, stressed and diseased cells but to different degrees. Modulation of the plasma membrane association and secretion in the extracellular environment by different types of stressors is the key event that leads to different degrees of immune system activation. Hence a better understanding of the mechanisms of Hsp72 secretion and association with plasma membrane is crucial.

This thesis investigated the tissue source and mechanism of Hsp72 surface presentation to plasma membrane structures and release in relation with different cellular and physiological stressors. *In vivo* models confirmed that different tissue types determine specific Hsp72 responses following the same stress and increase serum Hsp72 dependant on intensity and duration of the stress. Diseases models confirm that Hsp72 responses in specific cell populations is related to disease progression, while *in vitro* models clearly showed that there are multiple mechanisms of secretion and surface presentation, dependent on the nature of the stressor as well as the intensity and duration.

This observations clearly change the view of extracellular Hsp72 as a danger signal and lead to a revision of the original danger model. It also suggests that manipulation of Hsp72 translocation through the different pathways involved may prove effective therapeutically.
Publications

Table of content

Chapter 1. Introduction

1.1 Rationale of the study

1.2 The heat shock proteins family and the new nomenclature

1.3 Hsp72 as chaperone

1.4 Hsp72 in health and diseases
 1.4.1 Health
 1.4.1.1 Normal cells without stress
 1.4.1.2 Exercise stress
 1.4.1.3 Psychological stress
 1.4.1.4 Ageing
 1.4.2 Diseases
 1.4.2.1 Bacterial attack
 1.4.2.2 Auto inflammatory diseases
 1.4.2.3 Cancer

1.5 Importance of Hsp72 localization
 1.5.1 Intracellular
 1.5.1.1 Resistance to apoptosis
 1.5.2 Surface: Immune system activation
 1.5.2.1 Membrane embedded Hsp72 lipid rafts and membrane as stress sensor
 1.5.3 Extracellular: immune system activation (APC processing)
 1.5.3.1 Extracellular Hsp72 and cellular protection
 1.5.3.1 Surface bound-receptors

1.6 Mechanisms of Hsp72 release
 1.6.1 Necrosis vs. Apoptosis
 1.6.2 Classical release pathways
 1.6.3 Lipid rafts associated release
 1.6.4 Exosome associated release
1.6.5 Secretory-like granules 37
1.6.6 Lysosome pathway 38
1.6.7 ABC transporters 39
1.7 Aim of the thesis 42

Chapter 2. Material and Methods 43
2.1 Consumables 43
2.2 Equipments 44
2.3 Chemicals and Reagents 45
2.4 Buffers and solutions 50
 2.4.1 pH solutions 50
 2.4.2 General purpose solutions 50
 2.4.3 Hsp72 ELISA buffers 51
 2.4.4 Cell extraction buffer 52
 2.4.5 SDS-PAGE buffers 52
 2.4.6 Western blotting buffers 53
2.5 Tissue culture 54
 2.5.1 Jurkat and U937 resuscitation, culture and freezing 54
 2.5.2 U937 transformation into macrophages 54
 2.5.3 Cell preparation for experiments 55
 2.5.4 Primary culture of blood 55
2.6 Blood cells separation 56
 2.6.1 Whole blood collection 56
 2.6.2 Whole blood method 56
 2.6.3 PBMC purification with Histopaque 56
2.7 Cell viability and apoptosis determination 57
 2.7.1 Microscopy analysis 57
 2.7.2 Trypan blue exclusion assay 57
 2.7.3 Viability assay MTS 58
 2.7.4 Necrosis detection with Propidium Iodide fluorescent staining 59
 2.7.5 Caspase-3 fluorimetric assay 59
2.7.6 Caspase-3 FC assay 60
2.7.7 Annexin-V FC assay 60
2.7.8 Caspase-2 FC assay 61

2.8 Molecular techniques and Gene expression 62
2.8.1 mRNA extractions by affinity purification 62
2.8.2 mRNA isolation with TRIReagent® 63
2.8.3 c-DNA Synthesis 64
2.8.4 Primer design and choice 65
2.8.5 Real time PCR 65
2.8.6 Genomic DNA extraction 68

2.9 Detection of surface and intracellular Hsp72 protein in cells 69
2.9.1 Surface labelling with leukocytes markers 69
2.9.2 Surface Hsp72 detection by flow cytometry 70
2.9.3 Intracellular Hsp72 detection by flow cytometry 71
2.9.4 Protein extraction from cells for ELISA 71
2.9.5 Protein assay and DC protein assay 72
2.9.6 SDS Page electrophoresis 72
2.9.7 Western blotting 73
2.9.8 Intracellular Hsp72 detection: Cells extract ELISA 75
2.9.9 Extracellular Hsp72 detection: supernatant, serum and plasma ELISA 75

2.10 Fluorescence Microscopy methods 76
2.10.1 Detection of surface Hsp72 and the lysosome marker LAMP-1 76
2.10.2 Detection of Hsp72 and Golgi apparatus marker, Golgin 97 76
2.10.3 Detection of surface Hsp72 and the lipid raft marker GM-1 77

2.11 Confocal microscopy detection of Lipid rafts and Hsp72 in tissue cryosections 78
Chapter 3. Hsp72 expression and movement in a animal model: stressed pigs

3.1 Introduction 79

3.2 Methods and experimental design 80

3.3 Results 82
 3.3.1 Muscle temperature was affected by the exercise 82
 3.3.2 Hsp72 gene expression is tissue-specific 83
 3.3.3 Hsp72 ELISA showed a differential tissue intracellular protein expression 87
 3.3.4 Blood Intracellular Hsp72 decrease when exercise was performed 92
 3.3.5 Relocation of Hsp72 expression in muscle tissue is exercise specific 94
 3.3.6 Serum Hsp72 increase with exercise 97
 3.3.7 In vitro heat shock experiment with exercised pig blood: intracellular and extracellular Hsp72 98

3.4 Discussion 102

3.5 Summary 106

Chapter 4. Exercise and regulation of Hsp72 localisation in humans 107

4.1 Introduction 107

4.2 Methods and experimental design 110
 4.2.1 in-vitro experiments 110
 4.2.2 Exercise protocol method 111

4.3 Results 114
 4.3.1 in-vitro experiments 114
 4.3.1.1 IL-6 stimulation of macrophages 114
 4.3.1.2 Treatment with TNF-α 117
 4.3.1.3 Treatment with IFN-γ 120
 4.3.1.4 Epinephrine and prazosin treatment 123
 4.3.1.5 Norepinephrine treatment and Prazosin treatment 126
 4.3.2 Exercise experiments 129
4.3.2.1 Hsp72 gene expression after anti-inflammatory drug administration 129

4.3.2.2 Effects of the Wingate test and anti-inflammatory drugs administration: Hsp72 protein in different blood populations 131

4.3.2.3 Effects of the anti-inflammatory drugs administration in subjects undergone the Wingate exercise: inflammatory and anti-inflammatory cytokines release in plasma 133

4.3.2.4 Serum Hsp72 level after anaerobic exercise 136

4.3.2.5 Hsp72 release in plasma sample after aerobic and anaerobic exercise 137

4.4 Discussion 138

4.5 Summary 143

Chapter 5. Surface and intracellular Hsp72 analysis in age related blood malignancies 144

5.1. Introduction 144

5.2 Methods and experimental design 146

5.2.1 Experiment design 146

5.2.2 Sample preparation and flow cytometry analysis 147

5.2.3 Statistical Analysis 147

5.3 Results 148

5.3.1 Group division and chosen controls 148

5.3.2 Expression of s-Hsp72 on normal cells 149

5.3.3 Hsp72 in CLL patients 152

5.3.4 Cell count and effect on intracellular Hsp72 157

5.3.5 Duration of the disease and Hsp72 expression 158

5.3.6 Effects of chemotherapeutic treatment on surface Hsp72 159

5.3.7 Hsp72 in Other blood malignancies (AML, MDS) 160

5.4 Discussion 163

5.5 Summary 169
Chapter 6. Surface Hsp72 expression and apoptosis

6.1 Introduction

6.2 Methods and experimental design
6.2.1 Tissue Culture and blood cell preparation
6.2.2 Flow Cytometry analysis
6.2.3 Cell viability and proliferation, apoptosis and phosphatidyl-serine (PS) analysis
6.2.4 RT-Real Time PCR and preliminary preparation
6.2.5 Lipid rafts- Hsp72- nuclear visual analysis by fluorescence microscopy
6.2.6 Hsp72 release ELISA
6.2.7 Statistical analysis
6.2.8 Heat shock conditions

6.3 Results
6.3.1 Hsp72 induction after intense heat shock
6.3.2 The apical caspase-2 and the effector Caspase-3 is activated after intensive heat shock
6.3.3 Phosphatidylserine externalization after heat shock
6.3.4 Surface Hsp72 expression after heat shock
6.3.5 Lipid raft and Hsp72 localization by fluorescence microscopy
6.3.6 Co-localisation of Lamp-1 and Hsp72
6.3.7 Co-localisation of Golgin 97 and Hsp72.
6.3.8 Hsp72 release from cells
6.3.9 Intracellular Hsp72
6.3.10 Heat shocked blood

6.4 Discussion

6.5 Summary
Chapter 7. Manipulation of Hsp72 expression by membrane perturbation

7.1 Introduction 201
7.2 Methods and experimental design 203
7.3 Results 204
 7.3.1 Benzyl Alcohol treatment 204
 7.3.2 Phenethyl alcohol treatment 210
 7.3.3 Edelfosine treatment 214
7.4 Discussion 217
7.5 Summary 221

Chapter 8. Modulation of Hsp72 protein localisation by apoptosis and ABC transporters

8.1 Introduction 222
8.2 Methods and experimental design 224
8.3 Results 225
 8.3.1 Apoptosis inhibition 225
 8.3.1.1 Caspase-3 inhibition and Hsp72 localisation 225
 8.3.1.2 Caspase-2 inhibition and Hsp72 localisation 230
 8.3.1.3 Pan-caspase inhibitor Z-VAD FMK and Hsp72 localisation 235
 8.3.2 Necrosis inhibitor IM54 and Hsp72 localisation 240
 8.3.3 Hsp72 inhibition by KNK437 and Hsp72 localisation 245
 8.3.4 ABC transporters inhibitors 251
 8.3.4.1 Quinidine ABC inhibitor and Hsp72 localisation 251
 8.3.4.2 Glibenclamide ABC inhibitor and Hsp72 localisation 254
 8.3.4.3 Verapamil ABC inhibitor and Hsp72 localisation 257
 8.3.4.4 DIDS ABC inhibitor and Hsp72 localisation 261
 8.3.4.5 Sodium Orthovanadate ABC inhibitor and Hsp72 localisation 265
 8.4 Discussion 268
Chapter 9. Discussion

9.1 In vivo models 275

9.2 In vitro models 277

References 294
List of Figures

Chapter 1. Introduction

1.1 Summary of Hsp72 interactions with apoptotic pathways 27
1.2 Alternative secretion pathway hypothesized for Hsp72 35

Chapter 2. Material and Methods

2.1 Example of an haemocytometer grid 58
2.2 Example of a typical amplification plot obtained following a real time PCR analysis 67

Chapter 3. Hsp72 expression and movement in a animal model: stressed pigs

3.1 Temperature measurement (°C) in Longissimus Dorsi (LD) and Biceps Femoris (BF) 1 minute post mortem 82
3.2 Hsp72 gene expression in blood cells 84
3.3 Hsp72 gene expression in muscle tissue extract 85
3.4 Hsp72 gene expression in heart tissue extracts 85
3.5 Hsp72 gene expression in brain tissue extracts 86
3.6 Hsp72 gene expression in adrenal glands tissue extracts 86
3.7 Monoclonal antibody detected the Hsp72 in pig samples 88
3.8 Muscle cell extract Hsp72 ELISA 88
3.9 Heart cell extract Hsp72 ELISA 89
3.10 Brain cell extract Hsp72 ELISA 89
3.11 Adrenal glands cell extract Hsp72 ELISA 90
3.12 Liver cell extract Hsp72 ELISA 90
3.13 Aorta cell extract Hsp72 ELISA 91
3.14 Intracellular Hsp72 protein in different blood cell populations 93
3.15 Confocal sections of Biceps Femoris biopsies 95-96
Chapter 4. Exercise and regulation of Hsp72 localization in humans

4.1 Visualization of activated macrophages morphology in several pictures
4.2 Gating strategy for cell analysis
4.3 Cell activity, necrosis and apoptosis test in IL-6 treated U937 activated macrophages
4.4 Intracellular, surface and extracellular Hsp70 levels following IL-6 treatment in activated U937 macrophages
4.5 Cell activity, necrosis and apoptosis detection in U937 activated macrophages treated with TNF-α
4.6 Intracellular, surface and extracellular Hsp70 detection after TNF-α treatment in U937 activated macrophages
4.7 Cell activity, necrosis, apoptosis detection after IFN-γ treatment in U937 activated macrophages
4.8 Intracellular, surface, extracellular Hsp70 detection after IFN-γ treatment in U937 activated macrophages
4.9 Cell activity, necrosis, apoptosis test in Epinephrine and Prazosin treated U937 activated macrophages
4.10 Intracellular, surface and extracellular Hsp72 levels on U937 activated macrophages after epinephrine and prazosin treatment
4.11 Cell activity, necrosis and apoptosis on U937 activated macrophages after norepinephrine and prazosin treatment
4.12 Intracellular, surface and extracellular Hsp72 level on U937 activated macrophages after norepinephrine and prazosin treatment
4.13 Hsp72 gene expression in Wingate exercise
4.14 Hsp72 gene expression in Wingate anaerobic exercise after administration of anti-inflammatory drugs
4.15 Percentage of monocytes positive to Hsp72
4.16 Plasma IL-6 levels (ng/ml) in subjects treated with anti-inflammatory drugs
4.17 Plasma TNF-α levels (pg/ml) in subjects treated with anti-inflammatory drugs 134
4.18 Plasma IL-10 levels (pg/ml) in subjects treated with anti-inflammatory drugs 135
4.19 Serum Hsp72 levels (ng/ml) in exercised subjects treated with anti-inflammatory drugs 136
4.20 Effect of exercise on Hsp72 release from blood cells 137

Chapter 5. Surface and intracellular Hsp72 analysis in age related blood malignancies

5.1 Representative data from a CLL patients characterized as a high or low Hsp72-expressing 153
5.2 Fluorescence distribution of surface and intracellular Hsp72 expression in CLL patients 154
5.3 Surface Hsp72 expression on CLL 155
5.4 Intracellular Hsp72 expression on CLL 156
5.5 CLL lymphocytes count and i-Hsp72 expression 157
5.6 CLL duration and i-Hsp72 expression 158
5.7 Surface and intracellular Hsp72 expression on the total leukocytes from selected CLL patients treated with Fludarabine and Cyclophosphamide 159
5.8 Correlation graph of surface Hsp72 expression on Neutrophils and Monocytes cell populations on AML patients 162

Chapter 6. Surface Hsp72 expression and apoptosis

6.1 Hsp72 expression after heat shock treatment. 174
6.2 Cell activity, apoptosis, necrosis profile after 2h heat shock 176
6.3 Apoptosis (caspase-3) and necrosis profile after 4hours heat shock time course 177
6.4 Caspase-2 activation after intense heat shock 178
6.5 Annexin V expression after heat shock 179
6.6 Surface Hsp72 expression after heat shock 180
6.7 Annexin V and surface Hsp72 time course after heat shock 181
6.8 Correlation analysis between PS external presentation and surface Hsp72 182
6.9 Co-localization of Hsp72 and lipid rafts 185-186
6.10 Co-localization of LAMP-1 and Hsp72 188-189
6.11 Co-localization of Golgin 97 and Hsp72 191-192
6.12 Release of Hsp72 form Jurkat cells after 4 hours time course at different temperatures 193
6.13 Intracellular Hsp72 expression after intensive heat shock 194
6.14 Percentage surface Hsp72 in normal blood cells 195

Chapter 7. Manipulation of Hsp72 expression by membrane perturbation

7.1 Benzyl Alcohol (BA) treatment, necrosis and apoptosis morphology 205
7.2 Necrosis apoptosis and intracellular Hsp72 measurement in BA treated Jurkat cells 206
7.3 Treatment with BA and cell viability 208
7.4 Intracellular, surface and extracellular Hsp72 in BA treated cells 209
7.5 Phenethyl Alcohol (PhA) treatment, necrosis and apoptosis morphology 211
7.6 Treatment with PhA and cell viability 212
7.7 Intracellular, surface and extracellular Hsp72 analysis in PhA treated cells 213
7.8 Edelfosine treatment and cell viability 215
7.9 Intracellular, surface and extracellular Hsp72 analysis following Edelfosine treated cells 216

Chapter 8. Modulation of Hsp72 protein localization by apoptosis and ABC transporters

8.1 Cells visualization under microscope after caspase 3 inhibition 226
8.2 Cell viability and necrosis after caspase 3 inhibition 227
Chapter 9. Discussion

9.1 Pro inflammatory cytokines treatment effect on Hsp72 cellular localization and secretion 278
9.2 Effect of Adreno hormones treatment and Hsp72 movement 279
9.3 Summary of the events occurring during heat shock time course and the effect on Hsp72 localization 282
9.4 Apoptosis inhibitors and Necrosis inhibitor effects in the Hsp72 localization at normal growing temperatures (37°C) and heat shocked at 42°C and 45°C 283
9.5 ABC transporters inhibitors treatment at normal growing temperatures and at 42°C 285
9.6 Membrane interacting agents BA, PhA and Edelfosine and Hsp72 movement and secretion 287
9.7 Proposed model of the significance of Hsp72 secretion and surface presentation 291
List of Tables

Chapter 1. Introduction

1.1 Heat shock protein family members and their cellular localization 3
1.2 New heat shock protein nomenclature system based on the gene name 5
1.3 Summary of the main findings on exercise-related Hsp72 intracellular up-regulation and release 11
1.4 Immune response to heat shock proteins in infectious diseases 14
1.5 Immune response to Hsp in human autoimmune diseases 17
1.6 Hsp72 over-expression in different types of cancer 19
1.7 Hsp72 in relation to prognosis in different cancer types 21

Chapter 2. Materials and Methods

2.1 Calculation related to the relative quantization method 68
2.2 Lymphocytes subset classification using CD Markers 69

Chapter 4. Exercise and regulation of Hsp72 localization in humans

4.1 Lymphocytes sub-populations of cells and Hsp72 protein during the exercise in different treated groups 132

Chapter 5. Surface and intracellular Hsp72 analysis in age related blood malignancies

5.1 Characteristics of the patients involved in the study 146
5.2 Test of the different types of controls for similarity 148
5.3 Surface Hsp72 localization on leukocytes of a representative non age-matched control patient 150

xix
5.4 Intracellular Hsp72 localization on leukocytes of a representative non age-matched control patient 151

5.5 Surface Hsp72 expression on the leukocytes from age-matched control (AMC), AML and MDS patients 161
Abbreviation List

ABC = ATP Binding Cassette transporter
AIF = Apoptosis Inducing Factor
ALP= Alkyl lysophospholipids
AMI =Acute Myeloid Leukaemia
APC = Antigen Presenting Cell
BA = Benzyl Alcohol
BF = Biceps Femoris
CK = Creatinine Kinase
Cer = Ceramide
Cyt C = Cytochrome C
DC = Dendritic Cells
DIDS = Diisothiocyanatostilbene-2, 2′-disulfonate
DoCer = Dodecasaccharide Ceramide
DRM = Detergent Resistant Microdomain
E = Epinephrine
ER = Endoplasmic Reticulum
GalCer = Galactosyl Ceramide
Gb3 = Globotraosyl Ceramide
GFR = Growth Factor Receptor
GM-1 = Ganglioside M-1
GPRC = G protein coupled receptor
GM-CSF
HSF-1 = Heat Shock Factor-1
HSE = Heat shock element
HSP = Heat Shock Protein
Hsp70 = Heat Shock Protein 70
Hsp72 = Heat Shock Protein 72
Hsp90 = Heat Shock Protein 90
IFN-γ = Interferon –γ
KNK437 = N-formyl-3, 4-methylenedioxy-benzylidene-y-butyro lactam
IL-1β = Interleukin-1β
IL-6 = Interleukin-6
IL-10 = Interleukin-10
IL-12 = Interleukin-12
IM54 = 2- (1H-indol-3-yl-)-3-penthylamino-malemide
LacCer = Lactosyl Ceramide
LD = Longissimus Dorsi
LPS = Lipopolysaccharide
MDR = Multi Drug Resistance
MEF = Murine Embryonic Fibroblast
MFI = Mean of Fluorescence Intensity
MHC = Major Hystocompatibility Complex
MVB = Multi Vesicular Bodies
MRP = Multidrug Resistance Protein
NK = Natural Killer Cells
PBL = Peripheral Blood Lymphocytes
PBMC = Peripheral Blood Mononuclear Cells
PDT = Photo Dynamic Therapy
PgP = P-Glycoprotein
PhA = Phenetyl Alcohol
PS = Phosphatidylserine
RMFI = Relative mean of fluorescence intensity
ROS = Reactive Oxygen Species
SC = Scavenger Receptors
SLE = Systemic Lupus Eritematosus
TLR = Toll Like Receptor
TNF-α = Tumour Necrosis Factor -α
UPS = Ubiquitin Proteosome System