Title of Dissertation:

The effect of walking aids on gait symmetry and speed in hemiplegic patients

“Dissertation submitted in accordance with the requirements of University of Chester for the degree of Master of Science.”

September 2008

Student Name: Ma Sau Lai
Module Tutor: Professor Kevin Sykes
Declaration

“This work is original and has not been submitted previously in support of a degree qualification or other course.”

Ma Sau Lai
Acknowledgements

I would like to thank Professor Kevin Sykes, my supervisor, for his valuable comments on my thesis and his kindness support to extend my study for one year to finish this work.

Moreover, I would like to thank Dr Stephen Fallows, the CENS Research Co-ordinator, for his valuable comments on my research proposal, draft of my thesis and his prompt response to my enquiry.

I would also like to thank Ms Moira Hazelton, Centre Adminstrative Co-ordinator, for her help in delivering massage to me and her immediate response to my enquiries

In addition, I would like to thank Ms Elaine So, Physiotherapy Department Manager in Tung Wah Hospital, for her kindness support to carry out the study and Mr Chris Wong, my physiotherapy colleague, for his kindness and great support in statistical and technical issues.

Finally, I would like to thank my Husband, Scott Yeung, my daughter, Tiffany Yeung and my son, Timothy Yeung for their great support for me to finish my dissertation.
Title: The effect of walking aids on gait symmetry and speed in hemiplegic patients

Ma S. L.

Abstract

The purpose of this study was to investigate the effect of a stick and a quadripod on force distribution, temporal asymmetry and gait speed in sub-acute stroke patients. Thirty subjects (mean age is 64 ± 13 yr.) with first stroke who were able to walk unaided under supervision took part in this study. They walked randomly for at least fourteen meters for three walking conditions (walked unaided, with stick and with quadripod). The gait parameters, ground reaction force (GRF), temporal symmetry values and gait speed for each walking condition were measured with the Infotronic Ultraflex Gait Analysis System. The Mann-Whitney Tests, repeated measures ANOVA, Friedman test, and post-hoc test, Wilcoxon Signed Ranks Test were adopted. The results showed 74% of the subjects walked with asymmetry gait pattern which presented with prolonged swing phase and shorted stance phase in the paretic limb. Then there was no significant difference in the mean GRF in mid-stance phase between the paretic and non-paretic limbs in walking unaided (p=0.79) and walking with stick (p=0.15). However, use of quadripod significantly decreased the weight bearing on the paretic limb (670.17±156.80 vs 688.80±186.63 Newton, p=0.004) compared with unaided walking. Furthermore, walking speed was significant slower if stick (0.40±0.16m/s) or quadripod (0.39±0.14m/s) were used when compared with unaided walking.
(0.43±0.18m/s, p=0.019). Finally, walking aids was found to have no effect on all temporal symmetry values when compared with no aid (p>0.05). In conclusion, to achieve a symmetrical gait pattern in mild to moderate severe sub-acute stroke survivors under rehabilitation, walking aids, especially quadripod, was not encouraged.
Table of Contents

Chapter 1 – Introduction

1.1 Stroke and rehabilitation p.10
1.2 Normal gait p.11
1.3 Hemiplegic gait p.15
1.4 Using walking aids in gait training p.23
1.5 Aim of the study p.29
1.6 Hypothesis p.29

Chapter 2 – Methodology

2.1 Participants p.31
2.2 Design p.32
2.3 Instrumentation p.32
 2.3.1 Equipment for gait analysis p.32
 2.3.2 Apparatus for balance & gait speed assessment p.33
2.4 Procedures p.34
2.5 Outcome measures p.36
 2.5.1 Subjects’ characteristics p.36
 2.5.2 Gait parameters p.36
 2.5.3 The balance performance p.37
2.6 Statistical analysis
2.7 Ethical implications

Chapter 3 – Results

3.1 Subject’s characteristics
3.2 Ground reaction force
3.3 Temporal symmetry
3.4 Gait speed
3.5 Correlation between ground reaction force and gait speed
3.6 Correlation between temporal symmetry and gait speed

Chapter 4 – Discussion

4.1 Ground reaction force
4.2 Temporal symmetry
4.3 Gait speed
4.4 Relationship between gait speed and ground reaction force
4.5 Relationship between gait speed and temporal symmetry
4.6 Clinical implication
4.7 Limitation
Chapter 5 – Conclusion

References

Appendixes

Appendix A: Raw data
Appendix B: Statistic results
Appendix C: Research Information Sheet
Appendix D: Consent Form
Appendix E: Ethical approval letter
Appendix F: Data Collection Sheet

Figures

Figure 1: Terminology & timing of gait cycle
Figure 2: Spatial parameter of gait measured from foot prints
Figure 3: Instrumented shoes & portable CDG measuring unit
Figure 4: Standardized stick & quadripod
Figure 5: Back view of a subject wearing CDG measuring unit
Figure 6: Side view of a subject wearing CDG measuring unit
Tables

Table 1: Definition of terminology of gait p.13
Table 2: Demographic characteristic of 30 subjects p.40
Table 3: Mean GRF of 30 subjects p.41
Table 4: Mean symmetry values of 30 subjects p.43
Table 5a: Prevalence of overall temporal symmetry values p.44
Table 5b: Overall temporal symmetry values of 30 subjects p.45
Table 6: Mean gait speed of 30 subjects p.46
Table 7: Pearson correlation between gait speed and mean GRF p.47
Table 8: Pearson correlation between gait speed and absolute temporal symmetry p.48