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EQUATION WITH MULTIPLICATIVE FOURIER NOISE

DIMITRA C. ANTONOPOULOU#∗

Abstract. We consider in dimensions d = 1, 2, 3 the ε-dependent stochastic Cahn-Hilliard equa-
tion with a multiplicative and sufficiently regular in space infinite dimensional Fourier noise with
strength of order O(εγ), γ > 0. The initial condition is non-layered and independent from ε. Under
general assumptions on the noise diffusion σ, we prove moment estimates in H1 (and in L∞ when
d = 1). Higher H2 regularity p-moment estimates are derived when σ is bounded, yielding as
well space Hölder and L∞ bounds for d = 2, 3, and path a.s. continuity in space. All appearing
constants are expressed in terms of the small positive parameter ε. As in the deterministic case,
in H1, H2, the bounds admit a negative polynomial order in ε. Finally, assuming layered initial
data of initial energy uniformly bounded in ε, as proposed by X.F. Chen in [11], we use our H1

2d-moment estimate and prove the stochastic solution’s convergence to ±1 as ε → 0 a.s., when the
noise diffusion has a linear growth.

1. Introduction

1.1. The stochastic equation. We consider the ε-dependent stochastic Cahn-Hilliard equation
with multiplicative noise

ut = ∆
(
− ε∆u+

1

ε
f(u)

)
+ εγσ(u)Ẇ (x, t) in D, t ∈ (0, T ),

∂u

∂η
=

∂∆u

∂η
= 0 on ∂D, t ∈ (0, T ),

u(x, 0) = u0(x) on D.

(1.1)

Here, D is a bounded domain in Rd with d = 1, 2, 3 of sufficiently smooth boundary, γ > 0, and
ε > 0 is a small positive parameter. The noise diffusion coefficient σ has at most a linear growth

|σ(x)| ≤ c(1 + |x|α) ∀ x ∈ R,

for α ∈ [0, 1]. Along the boundary the standard Neumann conditions for u and ∆u are imposed,
where η is the outward normal vector. The function f = f(u) = F ′(u) is a balanced bistable
nonlinearity, defined as the derivative of a double equal well potential F ; a typical choice is

(1.2) F (u) :=
1

4
(u2 − 1)2, f(u) = u3 − u.
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For simplicity, we will assume (1.2). The noise Ẇ is the formal derivative of a Q-Wiener process
W which is given as a Fourier Brownian series, and is thus, non smooth in time; its required
smoothness in space will be specified later.

Let (Ω,F ,F,P) be the filtered probability space where the L2(D)-valuedQ-Wiener processW (·, t)
is defined, cf. [14], for a symmetric, non-negative definite operator Q. Let also (ei)i∈N be an induced
complete L2(D)-orthonormal basis of eigenfunctions corresponding to the non-negative eigenvalues
a2i , satisfying thus,

Qei = a2i ei.

W is then defined as the Fourier series

(1.3) W (x, t) :=
∞∑
i=1

aiβi(t)ei(x),

for a sequence of independent real-valued Brownian motions {βi(t)}t≥0, [14].
The stochastic Cahn-Hilliard equation is a model for the non-equilibrium dynamics of metastable

states [12, 20, 21]. It describes the phase separation of a binary alloy which is forced to homog-
enization, where the solution u is the mass concentration of one of the alloy components. The
parameter ε > 0 stands as the order of the width of the transition layers separating the two phases.
The noise which is in general of a gaussian type may stem from external fields, impurities in the
alloy, thermal fluctuations or external mass supply, see for example in [20, 12, 21, 19].

Various stochastic versions of the Cahn-Hilliard equation with general polynomial nonlinearity
have been analyzed in [8, 9, 13, 15]. Via a convolution semigroup, for the case of unbounded noise
diffusion with the non smooth in space and time noise of Walsh, [27], space-time Hölder estimates
of mild solutions were proven when the initial and boundary value problem is posed on a rectangle,
[6]. See also some more recent results in [25, 26], for additive and multiplicative Wiener noise
and quite general double-well potentials, and for the stochastic viscous equation with potential of
arbitrary growth at infinity. In [18], a wide class of equations including the stochastic Cahn-Hilliard
equation was examined, with multiplicative finite dimensional Wiener noise of Stratonovich type;
there, the authors investigated the density of projections of global mild solutions, if such solutions
exist. In [4], existence of a density in dimension 1 was established for unbounded noise diffusion.
When σ(u) ≡ 1 for the problem (1.1), layer dynamics have been derived in [3] when d = 1, and
the sharp interface limit when d = 2, 3 in [2]. Considering reaction diffusion stochastic systems of
second order with multiplicative noise, we refer to the interesting analysis in [10] on existence and
uniqueness of mild solutions.

1.2. Main results. In Section 2, for ε-independent u0, we derive up to H2(D) p-moments under
sufficient conditions on the growth of σ and the regularity in space of the Fourier noise dW in
d = 1, 2, 3.

The first part therein is devoted to the H1(D) 2d-moment derivation. In Lemma 2.1, we apply
Itô formula and prove the fundamental identity (2.13) for the functional

F̃ (u) =

∫
D
F (u)dx+

ε2

2
∥∇u∥2,

and the bound (2.8), then, in Main Theorem 2.1 we provide the moment estimate, when the noise
is in H2(D) or H3(D) for d = 1 and d = 2, 3 respectively. The case of noise diffusion of linear
growth is covered by the general assumptions on σ.
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We proceed by proving p-moment estimates first inH1(D) and then inH2(D). As it seems higher
regularity in H2(D) proven even for the 2d order through the p-moments in H1(D) (which involve

the functional F̃ (u), see Theorem 2.2 for the H1 p-moments), restricts the noise diffusion growth
to this of a bounded one. The technical proof of Main Theorem 2.3 establishes the H2 p-moment
estimates, after proper use of the Gagliardo-Nirenberg’s inequality on various non-linear terms. All
our bounds are expressed in terms of ε and have in general a negative polynomial order in ε. A
priori estimates up to H2 had been first introduced in the classic work of Elliott, Zheng Songmu,
[16], for the deterministic problem where global existence was proven. In dimensions d = 2, 3
H2(D) regularity of the stochastic equation yields L∞(D) regularity, and Hölder regularity which
is essential for continuous paths in space for general domains. In a series of papers, the stochastic
Cahn-Hilliard equation with multiplicative non smooth noise in space and in time was considered
and path regularity in space and in time had been analyzed [8, 9, 5, 6]. However, there, the domains
were rectangular and a semigroup approach with the Green’s function estimates was applicable for
deriving Hölder estimates in space and time. In a more general domain geometry such tools are
not effective, due to the lack of knowledge of the bi-Laplacian eigenfunctions behaviour, even if the
noise is smooth in space as in the current work.

Energy estimates can easily yield H1(D) bounds when the stochastic Cahn-Hilliard equation is
considered, see for example in [13]; we also refer to [24] for some more recent p-moment estimates
in L2(D) and H1(D) for the equation with degenerate mobility and logarithmic potential. In this
paper, we prove p-moment regularity estimates for all p ≥ 1 up to H2(D) which is the critical space
for strong solutions in the spatial variables in dimensions 2, 3. This is a fourth order nonlinear
stochastic equation and many results are still missing from the literature for such problems even
for the case of one only Brownian mode in the Fourier series.

Regularity estimates in norms higher than H2(D) in expectation are left for the interested
reader. They can be derived for sufficiently smooth initial conditions, for a sufficiently smooth
noise in space, by differentiating the stochastic equation and following the approach we proposed
for deriving the H2 estimates. The arguments of [16] on higher regularity in space are not directly
applicable in the Fourier Brownian case due to the fact that the time integral of the noise term
is only at most α-Hölder continuous in time, α < 1/2; there see at pg. 345, the main argument
was the time differentiability of the deterministic solution u, obviously not the case of non smooth
noise in time as here. Moreover, for example p-moments estimates in H6(D) (in supremum in time)
would yield L∞(D) bounds in d = 2, 3 for the bi-Laplacian and all the lower order terms of the
stochastic C-H, and thus, by integrating the equation in (t, s) for all t < s, α-Hölder continuity in
time for some α < 1/2, and so on.

In Section 3, we consider layered and thus ε-dependent u0 where the initial energy (on u0) is
uniformly bounded in ε; this condition has been proposed by X.F. Chen in [11] for the scaling
of (1.1). A direct application of the general H1 2d-moment estimate establishes the stochastic
solution’s convergence to ±1 as ε → 0 a.s., when the noise diffusion has a linear growth, see Theorem
3.1. Additionally, we present some interesting simple cases for the noise where the solution is mass
conservative and the estimates proven are valid.

We have also inserted an Appendix presenting the version of Burkholder-Davis-Gundy inequality
used in our proofs, and the stochastic Gronwall’s Lemma.
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2. p-Moment estimates in ε for non layered initial data

2.1. Preliminaries. Let (·, ·) be the L2(D)-inner product, ∥ · ∥ the induced L2(D)-norm, and
Hk(D), k ∈ N the usual Sobolev spaces on D. Let also ∥ · ∥Hk denote the Hk(D)-norm and ∥ · ∥∞
the ∥ · ∥L∞(D)-norm.

Our aim, is to derive estimates for the higher moments in the L2(D), H1(D) andH2(D) norms for
the solution u of (1.1), when the noise diffusion σ(u) satisfies certain properties. Higher moments
in the L∞(D)-norm will then follow by the H1 and H2 estimates in dimensions d = 1 and d = 2, 3
respectively. These estimates will depend on ε and will be valid for u0 independent of ε.

For the rest of this paper, the notation d will correspond to differentiation with respect to t, and
c will be used for generic constants.

Equation (1.1) can be written as

(2.1) du = L(u, ε)dt+ εγσ(u)dW,

for

(2.2) L(u, ε) := ∆
(
− ε∆u+

1

ε
f(u)

)
.

By using the Itô calculus identities, see for example in [7]

(2.3) dβidβj = δijdt, dβidt = dtdβi = dtdt = 0dt,

and the noise definition (1.3), we easily obtain that

(2.4) dW =
∞∑
i=1

aidβi(t)ei(x), dtdW = dWdt = 0dt.

Therefore, by taking the L2(D) inner product, (2.1) yields

(2.5) (du, du) = ε2γ
∞∑
i=1

a2i ∥σ(u)ei∥2dt.

2.2. L2 and H1 2d moment. We define the functional

(2.6) F̃ (v) :=

∫
D

(
F (v) +

ε2

2
(∇v)2

)
dx =

∫
D
F (v)dx+

ε2

2
∥∇v∥2,

for

F ′(v) = f(v).

The next lemma presents a useful bound for F̃ (u) when the Fourier noise is sufficiently regular.

Lemma 2.1. Let u be the solution of (1.1), F̃ (u) the functional defined by (2.6), and let the noise
satisfy the next regularity assumptions

∞∑
i=1

a2i ∥ei∥2H2 < ∞ when d = 1, and
∞∑
i=1

a2i ∥ei∥2H3 < ∞ when d = 2, 3.(2.7)
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Then, it holds that

F̃ (u(t))+
1

ε

∫ t

0
∥∇[f(u)− ε2∆u]∥2ds

≤
∫
D
F (u0)dx+

ε2

2
∥∇u0∥2 +

ε2γ

2

∫ t

0
(f ′(u)σ(u)dW, σ(u)dW )

+ cε2+2γ

∫ t

0
(∥∇(σ(u))∥2 + ∥σ(u)∥2)ds+

∫ t

0
(f(u)− ε2∆u, εγσ(u)dW ).

(2.8)

Proof. Itô formula applied on the potential F yields

(2.9) d(F (u)) = F ′(u)du+
1

2
F ′′(u)dudu.

Indeed, observe that by the Fourier noise series and (2.3), (2.4), we get

dWdW =
( ∞∑

i=1

a2i e
2
i (x)

)
dt, dWdWdt = 0dt,

and thus, by (2.1)
dududu = dudududu = 0dt.

So, it follows that

d(u2) = d(uu) = 2udu+ dudu,

d(u4) = d(u2u2) = 2d(u2)u2 + d(u2)d(u2) = 2(2udu+ dudu)u2 + 4u2dudu.

Using that F (u) = 1
4(u

2 − 1)2, F ′(u) = u3 − u, F ′′(u) = 3u2 − 1, and the above, we obtain (2.9).
Moreover, we have

F ′(u) = f(u), F ′′(u) = f ′(u),

(d∇u,∇u) = −(du,∆u), d(∇u∇u) = 2(d∇u)∇u+ (d∇u)(d∇u).
(2.10)

By (2.9) and (2.10), we get

d(F̃ (u)) =d
(∫

D

(
F (u) +

ε2

2
(∇u)2

)
dx

)
=

∫
D
d
(
F (u) +

ε2

2
(∇u)2

)
dx

=

∫
D

[
d(F (u)) + 2

ε2

2
(d∇u)∇u+

ε2

2
(d∇u)(d∇u)

]
dx

=

∫
D

[
F ′(u)du+

1

2
F ′′(u)dudu− ε2du∆u+

ε2

2
(d∇u)(d∇u)

]
dx

=

∫
D

[
f(u)du+

1

2
f ′(u)dudu− ε2du∆u+

ε2

2
(d∇u)(d∇u)

]
dx

=(f(u)− ε2∆u, du) +
ε2

2
(d∇u, d∇u) +

1

2
(f ′(u)du, du).

(2.11)

Using (2.2), and (2.1), we arrive at

1

2
(f ′(u)du, du) =

1

2
(f ′(u)[L(u, ε)dt+ εγσ(u)dW ], L(u, ε)dt+ εγσ(u)dW )

=
ε2γ

2
(f ′(u)σ(u)dW, σ(u)dW ).

(2.12)
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Replacing (2.12) in (2.11), we derive the next fundamental identity

d(F̃ (u)) = (f(u)− ε2∆u, du) +
ε2

2
(d∇u, d∇u) +

ε2γ

2
(f ′(u)σ(u)dW, σ(u)dW ).(2.13)

In case of a logarithmic potential, an identity analogous to (2.13) is proven in [24]. We also
refer to some general identities of [22] proven for Q := I i.e., when the trace is infinite since∑∞

i=1 a
2
i ∥ei∥2L2 =

∑∞
i=1 1 = ∞ (case which is obviously not satisfying the regularity assumptions of

this lemma).
Using (2.13), and replacing du by its operator form, we have

d(F̃ (u)) = A1 +A2 +
ε2γ

2
(f ′(u)σ(u)dW, σ(u)dW ),(2.14)

for

A1 := (f(u)− ε2∆u, L(u, ε)dt+ εγσ(u)dW ), and A2 :=
ε2

2
(d∇u, d∇u).

Estimate of A1:

Replacing the operator L, integrating by parts, and using the boundary conditions, we obtain
the next identity

A1 :=(f(u)− ε2∆u, L(u, ε)dt+ εγσ(u)dW )

=
(
f(u)− ε2∆u,∆

(
− ε∆u+

1

ε
f(u)

)
dt+ εγσ(u)dW

)
=− 1

ε
∥∇(f(u)− ε2∆u)∥2dt+ (f(u)− ε2∆u, εγσ(u)dW ).

(2.15)

Estimate of A2:

We observe first that

∇dW =

∞∑
i=1

aidβi∇ei,

while

d∇u = (∇L)dt+ εγ∇(σ(u)dW ) = (∇L)dt+ εγ∇(σ(u))dW + εγσ(u)∇dW,

and

dt∇(σ(u)dW ) = dt∇dW = 0,

which yield

(d∇u, d∇u) = ε2γ(∇[σ(u)dW ],∇[σ(u)dW ])

= ε2γ
∞∑
i=1

a2i [∥∇σ(u)ei∥2 + ∥σ(u)∇ei∥2 + 2(∇(σ(u))ei, σ(u)∇ei)]dt

≤ cε2γ
∞∑
i=1

a2i ∥∇σ(u)ei∥2dt+ cε2γ
∞∑
i=1

a2i ∥σ(u)∇ei∥2dt.
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Thus, we get

A2 :=
ε2

2
(d∇u, d∇u) ≤cε2+2γ

∞∑
i=1

a2i ∥∇σ(u)ei∥2dt+ cε2+2γ
∞∑
i=1

a2i ∥σ(u)∇ei∥2dt

≤cε2+2γ∥∇σ(u)∥2
∞∑
i=1

a2i ∥ei∥2∞dt+ cε2+2γ∥σ(u)∥2
∞∑
i=1

a2i ∥∇ei∥2∞dt.

(2.16)

Due to the assumed noise regularity, we obtain for d = 1, 2, 3

∞∑
i=1

a2i ∥ei∥2∞ < ∞, and

∞∑
i=1

a2i ∥∇ei∥2∞ < ∞,(2.17)

and therefore,

A2 :=
ε2

2
(d∇u, d∇u) ≤ c[∥σ(u)∥2 + ∥∇σ(u)∥2]ε2+2γdt.(2.18)

Using (2.15), and (2.18) in (2.14) (integrating first in [0, t]), we get (2.8) as follows

F̃ (u(t)) +
1

ε

∫ t

0
∥∇[f(u)− ε2∆u]∥2ds =

∫
D
F (u(t))dx+

ε2

2
∥∇u(t)∥2 + 1

ε

∫ t

0
∥∇[f(u)− ε2∆u]∥2ds

≤
∫
D
F (u0)dx+

ε2

2
∥∇u0∥2 +

∫ t

0
(f(u)− ε2∆u, εγσ(u)dW )

+ cε2+2γ

∫ t

0
[∥∇(σ(u))∥2 + ∥σ(u)∥2]ds+ ε2γ

2

∫ t

0
(f ′(u)σ(u)dW, σ(u)dW ).

□

The next Main Theorem estimates in expectation the functional F̃ (u), and so, the second moment
in H1 (resulting also to an L2 second moment estimate).

Theorem 2.1. Let u be the solution of the stochastic Cahn-Hilliard equation (1.1). If the next
conditions hold true

(2.19) |σ2(v)f ′(v)| ≤ cF (v) + c,

and

(2.20) ∥σ(v)∥2 + ∥∇(σ(v))∥2 ≤ c

∫
D
F (v)dx+ c∥∇v∥2 + c,

uniformly for any v, and

(2.21)

∞∑
i=1

a2i ∥ei∥2H2 < ∞ when d = 1, or

∞∑
i=1

a2i ∥ei∥2H3 < ∞ when d = 2, 3,

then for d = 1, 2, 3, u satisfies for any t > 0

E(F̃ (u(t))) ≤ E
(∫

D
F (u(t))dx

)
+

ε2

2
E(∥∇u(t)∥2) + 1

ε
E
(∫ t

0
∥∇[f(u)− ε2∆u]∥2ds

)
≤cε2γ + cE

(∫
D
F (u0)dx

)
+ cε2E(∥∇u0∥2),

(2.22)
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and thus (since (|u| − 1)2 ≤ 4F (u) and therefore ∥u∥2 ≤ c
∫
D F (u)dx+ c)

E(∥u(t)∥2) ≤ c+ cε2γ + cE
(∫

D
F (u0)dx

)
+ cε2E(∥∇u0∥2),(2.23)

while

E(∥∇u(t)∥2) ≤ c
ε2γ

ε2
+

c

ε2
E
(∫

D
F (u0)dx

)
+ cE(∥∇u0∥2).(2.24)

Proof. We observe first, that

(σ(u)f ′(u)dW, σ(u)dW ) =
∞∑
i=1

a2i (e
2
i , σ

2(u)f ′(u))dt.

So, using that f(u) = u3 − u, we have f ′(u) = 3u2 − 1, and thus

σ2(u)f ′(u) = 3σ2(u)u2 − σ2(u).

Therefore, we have

|σ2(u)f ′(u)| ≤ 3σ2(u)u2 + σ2(u) = σ2(u)(3u2 − 1) + 2σ2(u).

The above and the noise regularity yield

(σ(u)f ′(u)dW, σ(u)dW ) =

∞∑
i=1

a2i (e
2
i , σ(u)

2f ′(u))dt

≤
∞∑
i=1

a2i ∥ei∥2∞
∫
D
|σ2(u)f ′(u)|dxdt

=c
[ ∫

D
|σ2(u)f ′(u)|dx

]
dt.

(2.25)

This inequality motivates the condition (2.19) |σ2(u)f ′(u)| ≤ cF (u) + c, since this term will be

hidden at the left-hand side of our next estimate, together with the term cε2+2γ
∫ t
0 (∥∇(σ(u))∥2 +

∥σ(u)∥2)ds of (2.8) which motivated the condition (2.20) ∥σ(u)∥2 + ∥∇σ(u)∥2 ≤ c
∫
D F (u)dx +

c∥∇u∥2 + c.
We use (2.8), which is valid due to the assumed noise regularity, and take expectation. Then the

assumptions (2.19), (2.20) on σ, and relation (2.25), yield

E
(∫

D
F (u(t))dx+

ε2

2
∥∇u(t)∥2 + 1

ε

∫ t

0
∥∇[f(u)− ε2∆u]∥2ds

)
≤E

(∫
D
F (u0)dx+

ε2

2
∥∇u0∥2

)
+

ε2γ

2
E
(∫ t

0
(σ(u)f ′(u)dW, σ(u)dW )

)
+ cε2+2γE

(∫ t

0

[ ∫
D
F (u(t))dx+ ∥∇u∥2

]
ds
)
+ cε2+2γ + 0

≤E
(∫

D
F (u0)dx+

ε2

2
∥∇u0∥2

)
+ cε2γ

(∫ t

0

[ ∫
D
F (u(t))dx+ ε2∥∇u∥2

]
ds
)
+ cε2+2γ + cε2γ ,
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and therefore, by Gronwall’s lemma, we get the result

E
(∫

D
F (u(t))dx+ε2∥∇u(t)∥2 + 1

ε

∫ t

0
∥∇[f(u)− ε2∆u]∥2ds

)
≤cE

(∫
D
F (u0)dx+ cε2∥∇u0∥2

)
+ cε2γ ,

since exp(ε2γt) is bounded as ε tends to zero. □ □

Remark 2.2. We note that (2.19)

|σ2(v)f ′(v)| ≤ cF (v) + c,

can be implemented, as f is a polynomial of third order, when for example σ has a linear growth,
i.e., satisfies the growth condition

(2.26) |σ(v)| ≤ c|v|α + c, α ≤ 1,

uniformly for any v, since |v|3 ≤ cv4 + c1 = c(v4 − 2v2 + 1) + 2cv2 − c+ c1 ≤ c2F (v) + 1
2 |v|

3 + c2.
Moreover, (2.20)

∥σ(v)∥2 + ∥∇(σ(v))∥2 ≤ c

∫
D
F (v)dx+ c∥∇v∥2 + c,

is satisfied when for example σ has the growth (2.26), and additionally the derivative of σ satisfies

(2.27) |σ′(v)| ≤ c,

uniformly for any v.

Remark 2.3. In the proof of the previous Theorem 2.1 we only needed
∞∑
i=1

a2i ∥ei∥2∞ < ∞,

for which sufficient are the conditions in (2.21).

Remark 2.4. The H1 estimate provided from the previous Theorem yields an L∞ estimate in
dimensions d = 1.

2.3. Higher moments in L2, H1, and H2. In order to derive second and higher moments
estimates for the supremum in time in H1 and thus in L2 norm (in dimensions 2, 3), we will avoid
Itô calculus and will use directly Burkholder-Davis-Gundy inequality. Moreover, we will use the
time integral of ∥u∥2H2 norm appearing in Lemma 2.5. Due to the power 2 there a bounded noise
diffusion assumption

|σ(u)| < const,

will be essential for deriving H2 bounds in d = 2, 3 and so L∞ bounds for this case. We point out
that the same term restricted the result of a.s. continuous solutions, when non-smooth in space
and in time noise was used in [6], in dimensions only d = 1, when the problem involved unbounded
noise diffusion.

An analogous argument will be applied when treating estimates in the H2 norm, where the time
integral of ∥∆2u∥2 will appear at the left-hand side of our estimates and will bound some terms
stemming from the noise.

We present first the following useful technical Lemma.
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Lemma 2.5. Let u be the solution of the stochastic Cahn-Hilliard equation (1.1). If the next
conditions hold true

(2.28) |σ(v)| ≤ c|v|α + c, α ≤ 1

2
,

uniformly for any v, and

(2.29)
∞∑
i=1

a2i ∥ei∥2∞ < ∞,

then in dimensions d = 1, 2, 3, u satisfies for any t > 0 and any p ≥ 1

E
(

sup
0≤t≤T

∥u∥2p
)
+ εpE

((∫ T

0
∥u∥2H2dt

)p)
≤cε−3pE

((∫ T

0
∥u∥2dt

)p)
+ c(εpγ + ε2γp−p) + cE(∥u0∥2p),

(2.30)

for some c > 0.

Proof. We write (1.1) as

du = L(u, ε)dt+ εγσ(u)dW,

and derive after integration by parts

d(u, u) =2(du, u) + (du, du) = 2(du, u) + ε2γ
∞∑
i=1

a2i ∥σ(u)ei∥2dt

=− 2ε∥∆u∥2dt− 2

ε
(f ′(u)∇u,∇u)dt+ 2εγ(σ(u)dW, u) + ε2γ

∞∑
i=1

a2i ∥σ(u)ei∥2dt.
(2.31)

Thus, using (2.31), we obtain for c0 > 0 as small we want

d(u, u) + 2ε∥∆u∥2dt =− 2

ε
(f ′(u)∇u,∇u)dt+ ε2γ

∞∑
i=1

a2i ∥σ(u)ei∥2dt+ 2εγ(σ(u)u, dW )

≤c0ε∥∆u∥2dt+ c

ε3
∥u∥2dt+ cε2γ∥σ(u)∥2dt+ 2εγ(σ(u)u, dW ).

(2.32)

For the derivation of the above, we used that by Young’s inequality

−2

ε
(f ′(u)∇u,∇u)dt =− 2

ε
((3u2 − 1)∇u,∇u)dt

≤2

ε
(∇u,∇u)dt = −2

ε
(u,∆u)dt

≤c0ε∥∆u∥2dt+ c

ε3
∥u∥2dt,

and the relation
∞∑
i=1

a2i ∥σ(u)ei∥2dt ≤
∞∑
i=1

a2i ∥σ(u)∥2∥ei∥2∞dt < c∥σ(u)∥2,

which is valid due to condition (2.29).
By (2.28), and since α ≤ 1

2 ≤ 1, we get

∥σ(u)∥2 ≤ c+ c∥u∥2.



HIGHER MOMENTS FOR THE STOCHASTIC CAHN-HILLIARD WITH MULTIPLICATIVE NOISE 11

We use the previous inequality in (2.32), and arrive at

d(u, u) + ε∥∆u∥2dt ≤ c

ε3
∥u∥2dt+ cε2γ∥u∥2dt+ cε2γdt+ cεγ(σ(u)u, dW )

≤ c

ε3
∥u∥2dt+ cε2γdt+ cεγ(σ(u)u, dW ).

(2.33)

Integration in [0, t] for 0 ≤ t ≤ T yields

∥u∥2 + ε

∫ t

0
∥∆u∥2ds ≤ c

ε3

∫ t

0
∥u∥2ds+ cεγ

∫ t

0
(σ(u)u, dW ) + ∥u0∥2 + cTε2γ .(2.34)

So, adding in both sides the term ε
∫ t
0 ∥u∥

2ds, using that cε−3 + cε ≤ cε−3, and the fact that due
to the boundary conditions of u, ∥u∥+ ∥∆u∥ is a norm equivalent to ∥u∥H2 , we obtain

∥u∥2 + ε

∫ t

0
∥u∥2H2ds ≤

c

ε3

∫ t

0
∥u∥2ds+ cεγ

∫ t

0
(σ(u)u, dW ) + c∥u0∥2 + cε2γ .

Taking supremum for 0 ≤ t ≤ T , we have

sup
0≤t≤T

∥u∥2 + ε

∫ T

0
∥u∥2H2ds ≤

c

ε3

∫ T

0
∥u∥2ds+ cεγ sup

0≤t≤T

∣∣∣ ∫ t

0
(σ(u)u, dW )

∣∣∣+ c∥u0∥2 + cε2γ .(2.35)

We use the main inequality (2.35) as follows: first, we take p-powers at both sides, and then
expectation, and also apply Burkholder-Davis-Gundy inequality for the stochastic integral (note

that by (2.29), we have as ei form an orthonormal basis, that
∞∑
i=1

a2i ≤ c
∞∑
i=1

a2i ∥ei∥2∞ < ∞). This

yields

E
(

sup
0≤t≤T

∥u∥2p
)
+ εpE

((∫ T

0
∥u∥2H2dt

)p)
≤cε−3pE

((∫ T

0
∥u∥2dt

)p)
+ cεpγE

(
sup

0≤t≤T

∣∣∣ ∫ t

0
(σ(u)u, dW )

∣∣∣p)+ cE(∥u0∥2p) + cε2γp

≤cε−3pE
((∫ T

0
∥u∥2dt

)p)
+ cεpγE

((∫ T

0
∥σ(u)u∥2ds)

)p/2)
+ cE(∥u0∥2p) + cε2γp.

(2.36)

We observe now that since α ≤ 1
2 ,

(2.37) ∥σ(u)u∥2 ≤ c∥u∥2H2 + c sup
0≤t≤T

∥u∥4 + c.

Indeed, since 1 + 2α ≤ 2, and ∥u∥∞ ≤ c∥u∥H2 , we have

∥σ(u)u∥2 ≤
∫
D
|u|2+2αdx+ c ≤ ∥u∥H2

∫
D
|u|1+2αdx+ c

≤c∥u∥2H2 + c
(∫

D
|u|1+2αdx

)2
+ c

≤c∥u∥2H2 + c∥u∥4 + c ≤ c∥u∥2H2 + c sup
0≤t≤T

∥u∥4 + c.



12 D. C. ANTONOPOULOU

Hence, since 4p/2 = 2p, we get for c0 > 0 as small

cεpγE
((∫ T

0
∥σ(u)u∥2dt

)p/2)
≤cεpγE

((∫ T

0
∥u∥2H2dt

)p/2)
+ cεpγTE

(
sup

0≤t≤T
∥u∥2p

)
+ cεpγ

=cεpγ−p/2εp/2E
((∫ T

0
∥u∥2H2dt

)p/2)
+ cεpγTE

(
sup

0≤t≤T
∥u∥2p

)
+ cεpγ

≤c0ε
pE

((∫ T

0
∥u∥2H2dt

)p)
+ c0E

(
sup

0≤t≤T
∥u∥2p

)
+ c(εpγ + ε2γp−p),

where we used the fact that ε is small enough, so that cεpγT ≤ c0.
Using now the above estimate in (2.36), we obtain

E
(

sup
0≤t≤T

∥u∥2p
)
+ εpE

((∫ T

0
∥u∥2H2dt

)p)
≤cε−3pE

((∫ T

0
∥u∥2dt

)p)
+ cεpγE

((∫ T

0
∥σ(u)u∥2ds)

)p/2)
+ cE(∥u0∥2p) + cε2γp

≤cε−3pE
((∫ T

0
∥u∥2dt

)p)
+ c0ε

pE
((∫ T

0
∥u∥2H2dt

)p)
+ c0E

(
sup

0≤t≤T
∥u∥2p

)
+ c(εpγ + ε2γp−p) + cE(∥u0∥2p) + cε2γp,

which yields the result, since c0 is as small we want, i.e.,

E
(

sup
0≤t≤T

∥u∥2p
)
+ εpE

((∫ T

0
∥u∥2H2dt

)p)
≤ cε−3pE

((∫ T

0
∥u∥2dt

)p)
+ c(εpγ + ε2γp−p) + cE(∥u0∥2p).

□

The next lemma involves the p-moments of the functional F̃ (u) =
∫
D F (u)dx + ε2

2 ∥∇u∥2 in
supremum.

Lemma 2.6. Under the assumptions of Theorem 2.1, it holds that

E
(

sup
0≤t≤T

(∫
D
F (u(t))dx+

ε2

2
∥∇u(t)∥2

)p)
+

1

εp
E
((∫ T

0
∥∇[f(u)− ε2∆u]∥2ds

)p)
≤cE

((∫
D
F (u0)dx

)p)
+ cε2pE

(
∥∇u0∥2p

)
+ εpγE

(
sup

0≤t≤T

∣∣∣ ∫ t

0
(f(u), σ(u)dW )

∣∣∣p)+ cε2p+pγE
(

sup
0≤t≤T

∣∣∣ ∫ t

0
(∆u, σ(u)dW )

∣∣∣p).
(2.38)
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Proof. We return to (2.8), take absolute values, then p power, and then supremum. In details, we
obtain (∫

D
F (u(t))dx+

ε2

2
∥∇u(t)∥2

)p
+ ε−p

(∫ t

0
∥∇[f(u)− ε2∆u]∥2ds

)p

≤c
(∫

D
F (u0)dx

)p
+ cε2p∥∇u0∥2p + cε2γp

∣∣∣ ∫ t

0
(σ(u)f ′(u)dW, σ(u)dW )ds

∣∣∣p
+ cε2p+2pγ

(∫ t

0
[∥∇(σ(u))∥2 + ∥σ(u)∥2]ds

)p
+ c

∣∣∣ ∫ t

0
(f(u), εγσ(u)dW )

∣∣∣p
+ c

∣∣∣ ∫ t

0
(∆u, εγ+2σ(u)dW )

∣∣∣p,
and so (∫

D
F (u(t))dx+

ε2

2
∥∇u(t)∥2

)p
+ ε−p

(∫ t

0
∥∇[f(u)− ε2∆u]∥2ds

)p

≤c
(∫

D
F (u0)dx

)p
+ ε2p∥∇u0∥2p + cε2γpT p

(
sup

0≤t≤T

∫
D
|σ2(u)f ′(u)|dx

)p

+ cεp(2+2γ)T p
(

sup
0≤t≤T

(∥∇(σ(u))∥2 + ∥σ(u)∥2)
)p

+ εpγ sup
0≤t≤T

∣∣∣ ∫ t

0
(f(u), σ(u)dW )

∣∣∣p + cε2p+pγ sup
0≤t≤T

∣∣∣ ∫ t

0
(∆u, σ(u)dW )

∣∣∣p.
We take again supremum, then by hiding terms at the left side and taking expectation the result
follows.

□

Remark 2.7. In view of the bound provided by the previous lemma, we see that in order to derive
higher moment estimates in L2 and H1, in supremum, we need to control the p-moments of the
noise terms at the right. This is achieved by the next Main Theorem.

Theorem 2.2. Let u be the solution of the stochastic Cahn-Hilliard (1.1). If the next conditions
hold true

(2.39) |σ(v)| ≤ c,

and

(2.40) ∥σ(v)∥2H2 ≤ c

∫
D
F (v)dx+ c∥∇v∥2 + c,

uniformly for any v, and∑
a2i ∥ei∥2H2 < ∞ for d = 1, or

∑
a2i ∥ei∥2H3 < ∞ for d = 2, 3,
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then for any p ≥ 1, and d = 1, 2, 3, u satisfies for any t > 0 and some integer k = k(p) > 0

E
(

sup
0≤t≤T

∥u(t)∥2p
)
+ ε2pE

(
sup

0≤t≤T
∥∇u(t)∥2p

)
+ E

(
sup

0≤t≤T

(∫
D
F (u(t))dx+

ε2

2
∥∇u(t)∥2

)p)
+

1

εp
E
((∫ T

0
∥∇[f(u)− ε2∆u]∥2ds

)p)
≤cE

(∣∣∣ ∫
D
F (u0)dx

∣∣∣p)+ cε2pE
(
∥∇u0∥2p

)
+

c

εk(p)
E
(
∥u0∥2p

)
+

c

εk(p)
.

(2.41)

Proof. Observe first that the assumptions of Theorem 2.1 hold true. Then by (2.38) and Burkholder
inequality, we obtain

E
(

sup
0≤t≤T

(∫
D
F (u(t))dx+

ε2

2
∥∇u(t)∥2

)p)
+

1

εp
E
((∫ T

0
∥∇[f(u)− ε2∆u]∥2ds

)p)
≤cE

((∫
D
F (u0)dx

)p)
+ cε2pE

(
∥∇u0∥2p

)
+ cεpγE

[( ∫ T

0
∥f(u)σ(u)∥2

)p/2]
+ cε2p+pγE

[( ∫ T

0
∥∆uσ(u)∥2ds

)p/2]
≤cE

((∫
D
F (u0)dx

)p)
+ cε2pE

(
∥∇u0∥2p

)
+ cεpγE

[( ∫ T

0
∥f(u)σ(u)∥2

)p/2]
+ cε2p+pγE

[
sup

0≤t≤T
∥σ(u)∥pL∞(D)

(∫ T

0
∥∆u∥2ds

)p/2]
≤cE

((∫
D
F (u0)dx

)p)
+ cε2pE

(
∥∇u0∥2p

)
+ cεpγE

[( ∫ T

0
∥f(u)σ(u)∥2

)p/2]
+ cε2p+pγE

[
sup

0≤t≤T
∥σ(u)∥2p

H2(D)

]
+ cε2p+pγE

[( ∫ T

0
∥u∥2H2(D)ds

)p]
.

(2.42)

Here, we remind that by Lemma 2.5, the assumptions of which are satisfied, we have

E
((∫ T

0
∥u∥2H2dt

)p)
≤ cε−4pE

((∫ T

0
∥u∥2dt

)p)
+ cε−p(εpγ + ε2γp−p) + cε−pE(∥u0∥2p).(2.43)

Due to the presence of the term ∥f(u)σ(u)∥ at (2.42), the noise diffusion growth is assumed
reduced to α = 0, and we considered |σ(u)| ≤ c, for the purposes of this theorem. More analytically,
by using Young’s inequality, we get

∥f(u)σ(u)∥2 =∥(u3 − u)σ(u)∥2 ≤ c

∫
D
(u3 − u)2dx ≤ c

∫
D
u6dx+ c

≤c∥u∥2L∞(D)

∫
D
u4dx+ c ≤ c∥u∥2H2∥u∥44 + c ≤ c∥u∥2H2 sup

0≤t≤T
∥u∥44 + c,

which yields ∫ T

0
∥f(u)σ(u)∥2ds ≤ c sup

0≤t≤T
∥u∥44

∫ T

0
∥u∥2H2ds+ c,
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and thus (∫ T

0
∥f(u)σ(u)∥2ds

)p/2
≤c sup

0≤t≤T
∥u∥2p4

(∫ T

0
∥u∥2H2ds

)p/2
+ c

≤c sup
0≤t≤T

∥u∥4p4 + c
(∫ T

0
∥u∥2H2ds

)p
+ c.

(2.44)

By (2.43) and (2.44), we obtain

εpγE
[( ∫ T

0
∥f(u)σ(u)∥2

)p/2]
≤cεpγE

(
sup

0≤t≤T
∥u∥4p4

)
+ cεpγE

((∫ T

0
∥u∥2H2ds

)p)
+ cεpγ

≤cεpγE
(

sup
0≤t≤T

(∫
D
F (u)dx

)p
+ c

)
+ cεpγE

((∫ T

0
∥u∥2H2ds

)p)
+ cεpγ

≤cεpγE
(

sup
0≤t≤T

(∫
D
F (u)dx

)p
+ c

)
+ cεpγ−4pE

((∫ T

0
∥u∥2ds

)p)
+ cεpγ−p(εpγ + ε2γp−p) + cεpγ−pE(∥u0∥2p) + cεpγ ,

(2.45)

where we used that
∫
D u4dx ≤ c

∫
D F (u)dx+ c.

Moreover, using once again (2.43), we get

cε2p+pγE
((∫ T

0
∥u∥2H2dt

)p)
≤cε2p+pγε−4pE

((∫ T

0
∥u∥2dt

)p)
+ cε2p+pγε−p(εpγ + ε2γp−p) + cε2p+pγε−pE(∥u0∥2p).

(2.46)

Using that u4 ≤ cF (u) + c and that εγ−4u2 ≤ ε−a1 + εa2u4 for some a1, a2 > 0, we obtain

cεpγ−4pE
((∫ T

0
∥u∥2ds

)p)
≤ E

(
sup

0≤t≤T

(∫
D
F (u(t))dx

)p)
+ cε−a3 ,(2.47)

for some a3 > 0.
Considering also

∥σ(u)∥2H2 ≤ c

∫
D
F (u)dx+ c∥∇u∥2 + c

and bounding the right-hand side of (2.42) by using (2.45), (2.46) and (2.47), we derive the result.
□

Our aim is to consider in the sequel H2 bounds. Gagliardo-Nirenberg’s inequality will control
the non-linear terms in the estimates. We present a useful general lemma in dimensions d = 2, 3
estimating various norms thereof when the Neumann boundary conditions are satisfied; see also in
[16] for some analogous, yet not the same, results.

Lemma 2.8. Let v satisfying the b.c.

∂v

∂η
=

∂∆v

∂η
= 0 on ∂D.

Then, in dimensions d = 2, the next estimates hold true for some k1 > 0 large

(2.48) ∥v2∆v∥ ≤ c∥∆2v∥7/10
[
∥v∥23/10

H1 + 1
]
+ c∥v∥35/4

H1 ,
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(2.49) ∥v|∇v|2∥ ≤ c∥∆2v∥13/30
[
∥v∥77/30

H1 + 1
]
+ c∥v∥k1

H1 + c,

while in dimensions d = 3 for some k2 > 0 large

(2.50) ∥v2∆v∥ ≤ c∥∆2v∥5/6
[
∥v∥13/6

H1 + 1
]
+ c∥v∥25/4

H1 ,

(2.51) ∥v|∇v|2∥ ≤ c∥∆2v∥2/3
[
∥v∥7/3

H1 + 1
]
+ c∥v∥k2

H1 + c.

Proof. According to the Gagliardo-Nirenberg’s inequality, [1],

∥Djv∥Lp ≤ c∥Dmv∥αLr∥v∥1−α
Lq + c∥v∥Lq ,

j

m
≤ α ≤ 1,

1

p
=

j

d
+ α

(1
r
− m

d

)
+ (1− α)

1

q
.

(2.52)

Let us consider first the case d = 2.
Taking (2.52) for p = ∞, j = 0, m = 4, r = 2, q = 6 and α = 1/10, we obtain

(2.53) ∥v∥L∞ ≤ c∥∆2v∥1/10∥v∥9/10
L6 + c∥v∥L6 ,

while taking (2.52) for p = 6, j = 0, m = 1, r = q = 2 and α = 2/3, we obtain

(2.54) ∥v∥L6 ≤ c∥∇v∥2/3∥v∥1/3 + c∥v∥ ≤ c∥v∥H1 .

Moreover, taking (2.52) for v replaced by ∇v, p = 4, j = 0, m = 3, r = q = 2 and α = 1/6, we
have

(2.55) ∥∇v∥L4 ≤ c∥∆2v∥1/6∥∇v∥5/6 + c∥∇v∥ ≤ c∥∆2v∥1/6∥v∥5/6
H1 + c∥v∥H1 .

We also note that due to the b.c. we have

(∆v,∆v) = (∆2v, v),

which yields

(2.56) ∥∆v∥ ≤ ∥∆2v∥1/2∥v∥1/2.
Using (2.53), (2.54), (2.56), and Young’s inequality we arrive at

∥v2∆v∥ ≤ ∥v∥2∞∥∆v∥ ≤ c
(
∥∆2v∥2/10∥v∥18/10

L6 + ∥v∥2L6

)
∥∆2v∥1/2∥v∥1/2

≤ c∥∆2v∥7/10∥v∥23/10
H1 + c∥∆2v∥7/10 + c∥v∥35/4

H1

≤ c∥∆2v∥7/10
[
∥v∥23/10

H1 + 1
]
+ c∥v∥35/4

H1 ,

i.e. (2.48).
By (2.53) and (2.54), we get

(2.57) ∥v∥∞ ≤ c∥∆2v∥1/10∥v∥9/10
H1 + c∥v∥H1 .

Hence, we use (2.57) and (2.55), and Young’s inequality, and obtain

∥v|∇v|2∥ ≤ ∥v∥∞∥∇v∥2L4 ≤ c∥∆2v∥1/10∥v∥9/10
H1 ∥∇v∥2L4 + c∥v∥H1∥∇v∥2L4

≤ c∥∆2v∥13/30
[
∥v∥77/30 + 1

]
+ c∥v∥k1

H1 + c

i.e. (2.49).
We consider now the case d = 3.
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Using (2.52) for p = ∞, j = 0, m = 4, r = 2, q = 6 and α = 1/6, we obtain

(2.58) ∥v∥∞ ≤ c∥∆2v∥1/6∥v∥5/6
L6 + c∥v∥L6 ,

while taking (2.52) for p = 6, j = 0, m = 1, r = q = 2 and α = 1, we obtain

(2.59) ∥v∥L6 ≤ c∥∇v∥+ c∥v∥ ≤ c∥v∥H1 .

Taking now (2.52) for v replaced by ∇v, p = 4, j = 0, m = 3, r = q = 2 and α = 1/4, we have

(2.60) ∥∇v∥L4 ≤ c∥∆2v∥1/4∥∇v∥3/4 + c∥∇v∥ ≤ c∥∆2v∥1/4∥v∥3/4
H1 + c∥v∥H1 .

Using (2.58), (2.59), (2.56), and Young’s inequality we have

∥v2∆v∥ ≤ ∥v∥2∞∥∆v∥ ≤ c
(
∥∆2v∥2/6∥v∥10/6

L6 + ∥v∥2L6

)
∥∆2v∥1/2∥v∥1/2

≤ c∥∆2v∥5/6
[
∥v∥13/6

H1 + 1
]
+ c∥u∥25/4

H1 ,

i.e. (2.50).
We use (2.58) and (2.60), and once again Young’s inequality, and get

∥v|∇v|2∥ ≤ ∥v∥∞∥∇v∥2L4 ≤ c
[
∥∆2v∥1/6∥v∥5/6

L6 + ∥v∥L6

]
∥∇v∥2L4

≤ c∥∆2v∥2/3
[
∥v∥7/3

H1 + 1
]
+ c∥v∥k2

H1 + c,

i.e. (2.51). □ □

Remark 2.9. In [16], the authors derived more elegant estimates analogous to these presented in
the previous lemma, under the assumption that

∫
D vdx = 0. The general strategy applied in [16] for

the derivation of H2 a priori estimates for the deterministic Cahn-Hilliard equation, significantly
inspired our approach towards the derivation of the p-moments in H2 norm for the stochastic
problem as well.

We now proceed to an H2 (and thus L∞(D)) higher moment estimate.

Theorem 2.3. Let the noise diffusion satisfy

(2.61) ∥σ(v)∥H2 ≤ c,

uniformly for any v. Moreover, assume that the noise is sufficiently regular in space, in particular
let

(2.62)
∞∑
i=1

a2i ∥ei∥2H4 < ∞,

and that ∥u0∥H2 has bounded p-moments.
Then for the solution u of (1.1), for any T > 0, and some integer k = k(p) > 0, and for any

p ≥ 1 and d = 1, 2, 3, it holds that

E
(

sup
0≤t≤T

∥u∥2p
H2

)
+ εpE

([ ∫ T

0
∥∆2u∥2ds

]p)
≤ c

εk(p)
,(2.63)

and therefore,

E
(

sup
0≤t≤T

∥u∥2p∞
)
≤ cE

(
sup

0≤t≤T
∥u∥2p

H2

)
≤ c

εk(p)
.(2.64)
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Proof. Observe that all the assumptions on the noise and on σ imposed in all the previous lemmas
and theorems, are satisfied (see also the boundedness of σ that follows from (2.61)).

When d = 1, L∞ higher moments are derived through theH1 estimate, and there the assumptions
on the regularity of noise dW , and on σ can be weakened.

We have

(2.65) d(∆u,∆u) = 2(d∆u,∆u) + (d∆u, d∆u),

while the Laplacian operator on the stochastic Cahn-Hilliard equation (1.1) yields

(2.66) d∆u = ∆(L)dt+ εγ∆(σ(u)dW ).

Since

∆(σ(u)dW ) =σ′′(u)|∇u|2dW + σ′(u)∆udW + 2σ′(u)∇u∇dW + σ(u)∆dW

=∆(σ(u))dW + 2∇(σ(u))∇dW + σ(u)∆dW = Bdt,
(2.67)

and since

∥ei∥∞ + ∥∇ei∥∞ + ∥∆ei∥∞ ≤ c∥ei∥H4 ,

and since from (2.62)
∞∑
i=1

a2i ∥ei∥2H4 ≤ c,

we get by (2.66), (2.67) and (2.62)

(2.68) (d∆u, d∆u) ≤ cε2γ
∑

a2i ∥ei∥2H4∥σ(u)∥2H2dt ≤ cε2γ∥σ(u)∥2H2dt.

Using now (2.65), and (2.68), we obtain

1

2
d∥∆u∥2 =(d∆u,∆u) +

1

2
(d∆u, d∆u) = (du,∆2u) +

1

2
(d∆u, d∆u)

≤(du,∆2u) + cε2γ∥σ(u)∥2H2dt

=− ε(∆2u,∆2u)dt+
1

ε
(∆(f(u)),∆2u)dt+ εγ(∆2u, σ(u)dW ) + cε2γ∥σ(u)∥2H2dt

=− ε∥∆2u∥2dt+ 1

ε
(6u|∇u|2,∆2u)dt+

1

ε
(3u2∆u,∆2u)dt

− 1

ε
(∆u,∆2u)dt+ εγ(∆2u, σ(u)dW ) + cε2γ∥σ(u)∥2H2dt.

(2.69)

So, we arrive at

∥∆u(t)∥2 + 2ε

∫ t

0
∥∆2u∥2ds ≤∥∆u(0)∥2 + 2

ε

∫ t

0
(6u|∇u|2,∆2u)ds

+
2

ε

∫ t

0
(3u2∆u,∆2u)ds− 2

ε

∫ t

0
(∆u,∆2u)ds

+ 2εγ
∫ t

0
(∆2u, σ(u)dW ) + cε2γ

∫ t

0
∥σ(u)∥2H2ds.

(2.70)

Due to Lemma 2.8, we obtain for

a1 :=

{
7/10 d = 2,

5/6 d = 3,
a2 :=

{
13/30 d = 2,

2/3 d = 3,
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and for µ1, µ2, µ3 > 0 some rather large powers of ∥u∥H1 , and some ℓ1 > 0

∥∆u∥2 + ε

∫ t

0
∥∆2u∥2ds ≤c∥∆u0∥2 +

c

ε

∫ t

0
∥∆2u∥a2+1∥u∥µ2

H1ds

+
c

ε

∫ t

0
∥∆2u∥a2+1ds+

C

ε

∫ t

0
∥∆2u∥ds

+
c

ε

∫ t

0
∥∆2u∥a1+1∥u∥µ1

H1ds+
C

ε

∫ t

0
∥∆2u∥a1+1ds

+
c

ε

∫ t

0
∥u∥µ3

H1ds+ cε−ℓ1

+
c

ε3

∫ t

0
∥∆u∥2ds

+ cε2γ
∫ t

0
∥σ(u)∥2H2ds+ cεγ

∫ t

0
(∆2u, σ(u)dW ),

where we hidded 2
ε |
∫ t
0 (∆u,∆2u)ds| ≤ c0ε

∫ t
0 ∥∆

2u∥2ds + cε−3
∫ t
0 ∥∆u∥2ds, for c0 > 0 as small, at

the left.
Since a1 + 1, a2 + 1 < 2, using Young’s inequality and hiding at the left the ∥∆2u∥ involving

terms, we get for some µ4, µ5, ℓ2 > 0

∥∆u∥2 + ε

∫ t

0
∥∆2u∥2ds ≤c∥∆u0∥2 +

c

εµ4

∫ t

0
∥u∥µ5

H1ds+ cε−ℓ2

+
c

ε3

∫ t

0
∥∆u∥2ds

+ cε2γ
∫ t

0
∥σ(u)∥2H2ds+ cεγ

∫ t

0
(∆2u, σ(u)dW ).

(2.71)

We use (2.34), i.e.

∥u∥2 + ε

∫ t

0
∥∆u∥2ds ≤ c

ε3

∫ t

0
∥u∥2ds+ cεγ

∫ t

0
(σ(u)u, dW ) + ∥u0∥2 + cTε2γ ,

which yields

∫ t

0
∥∆u∥2ds ≤ cε−4

∫ t

0
∥u∥2ds+ cεγ−1

∫ t

0
(σ(u)u, dW ) + ε−1∥u0∥2 + cTε2γ−1.(2.72)
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Using (2.72) in (2.71), we obtain for some integer m ≥ 2

∥∆u∥2 + ε

∫ t

0
∥∆2u∥2ds ≤c∥∆u0∥2 +

c

εµ4

∫ t

0
∥u∥µ3

H1ds+ cε−ℓ2

+
c

ε3

∫ t

0
∥∆u∥2ds+ cε2γ

∫ t

0
∥σ(u)∥2H2ds+ cεγ

∫ t

0
(∆2u, σ(u)dW )

≤c∥∆u0∥2 +
c

εµ4

∫ t

0
∥u∥µ3

H1ds+ cε−ℓ2

+ cε−7

∫ t

0
∥u∥2ds+ cεγ−4

∫ t

0
(σ(u)u, dW ) + ε−4∥u0∥2 + cTε2γ−4

+ cε2γ
∫ t

0
∥σ(u)∥2H2ds+ cεγ

∫ t

0
(∆2u, σ(u)dW )

≤c∥∆u0∥2 + cε−m

∫ t

0
∥u∥mH1ds+ cε−m

∣∣∣ ∫ t

0
(σ(u)u, dW )

∣∣∣+ ε−m∥u0∥2

+ cε2γ
∫ t

0
∥σ(u)∥2H2ds+ cεγ

∣∣∣ ∫ t

0
(∆2u, σ(u)dW )

∣∣∣+ cε−m.

(2.73)

Thus, taking p powers and then supremum in [0, T ], we arrive at

sup
0≤t≤T

∥∆u∥2p + εp
[ ∫ T

0
∥∆2u∥2ds

]p
≤c∥∆u0∥2p + cε−mp sup

0≤t≤T
∥u∥mp

H1

+ cε−mp sup
0≤t≤T

∣∣∣ ∫ t

0
(σ(u)u, dW )

∣∣∣p + ε−mp∥u0∥2p

+ cεγp sup
0≤t≤T

∣∣∣ ∫ t

0
(σ(u)dW,∆2u)

∣∣∣p
+ cε2γp

(∫ T

0
∥σ(u)∥2H2ds

)p
+ cε−mp.

(2.74)

Hence, we get

E
(

sup
0≤t≤T

∥∆u∥2p
)
+ εpE

([ ∫ T

0
∥∆2u∥2ds

]p)
≤cE(∥∆u0∥2p) + cε−mpE( sup

0≤t≤T
∥u∥mp

H1)

+ cε−mpE
(

sup
0≤t≤T

∣∣∣ ∫ t

0
(σ(u)u, dW )

∣∣∣p)+ ε−mpE(∥u0∥2p)

+ cεγpE
(

sup
0≤t≤T

∣∣∣ ∫ t

0
(σ(u)dW,∆2u)

∣∣∣p)
+ cε2γpE

(∫ T

0
∥σ(u)∥2H2ds

)p
+ cε−mp.

(2.75)

The ∥σ(u)∥H2 term in the above inequality motivated (2.61).
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Since |σ(u)| ≤ ∥σ(u)∥H2 ≤ c, then we obtain

cεγpE
(

sup
0≤t≤T

∣∣∣ ∫ t

0
(∆2u, σ(u)dW )

∣∣∣p) ≤cεγpE
((∫ T

0
∥σ(u)∆2u∥2ds

)p/2)
≤cεγpE

((∫ T

0
∥∆2u∥2ds

)p/2)
≤cε2γp−p +

εp

2
E
((∫ T

0
∥∆2u∥2ds

)p)
,

(2.76)

and

(2.77) E
(

sup
0≤t≤T

∣∣∣ ∫ t

0
(σ(u)u, dW )

∣∣∣p) ≤ cE
((∫ T

0
∥σ(u)u∥2ds

)p/2)
≤ cE

((∫ T

0
∥u∥2ds

)p/2)
.

Using in (2.75) the relations (2.61), (2.76) and (2.77), and the H1 p-moments estimate (2.41)
(which is of negative polynomial order in ε), we obtain for some integer k1 = k1(p) > 0 and
m1,m2 > 0

E
(

sup
0≤t≤T

∥∆u∥2p
)
+

εp

2
E
([ ∫ T

0
∥∆2u∥2ds

]p)
≤cE(∥∆u0∥2p) + cε−mpE(sup

t≤T
∥u∥mp

H1) + cε−mpE
((∫ T

0
∥u∥2ds

)p/2)
+ ε−mpE(∥u0∥2p) + cε2γp−p + cε2γp + cε−mp

≤CE(∥∆u0∥2p) + cε−m1pE( sup
0≤t≤T

∥u∥m1p
H1 ) + ε−mpE(∥u0∥2p) + cε2γp−p + cε2γp + cε−m2p

≤cε−k1 .

So, using again (2.41), and since ∥u∥2H2 ≤ c∥u∥2 + c∥∆u∥2 we arrive at the final estimate for some
integer k = k(p) > 0

E
(

sup
0≤t≤T

∥u∥2p∞
)
≤ cE

(
sup

0≤t≤T
∥u∥2p

H2

)
+ εpE

([ ∫ T

0
∥∆2u∥2ds

]p)
≤ cε−k(p).(2.78)

□

Remark 2.10. Under the assumptions of the above Theorem 2.3, by (2.75), we also derive the
next inequality for any p ≥ 1

E
(

sup
0≤t≤T

∥∆u∥2p
)
+ εpE

([ ∫ T

0
∥∆2u∥2ds

]p)
≤ cε−mp,

for some integer m > 0.
Moreover, see for example in [17], pg. 270, if ∂D is C1, using the Sobolev embedding for Hölder

norms and since 2 > d
2 when d = 1, 2, 3

∥u∥
C2−[ d2 ]−1,γ(D)

≤ c∥u∥H2(D),
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for any 0 < γ < 1 if d
2 =

[
d
2

]
, i.e. when d

2 is integer, and for γ =
[
d
2

]
+ 1 − d

2 if d
2 is not integer

(where [·] denotes the integer part), we obtain by (2.78): for

∥u(·, t)∥C0,γ(D) := sup
x ̸=y∈D

|u(x, t)− u(y, t)|
|x− y|γ

,

for |x− y| for example the euclidean metric in Rd

E
(

sup
0≤t≤T

∥u(·, t)∥2p
C0,γ(D)

)
≤ cE

(
sup

0≤t≤T
∥u(·, t)∥2p

H2(D)

)
≤ cε−k(p)

for some integer k(p) > 0, for any 0 < γ < 1 for d = 2, and for γ = 1
2 when d = 3 (and analogously

for d = 1, however there lower regularity than H2 is also sufficient for Hölder estimates, not the
case in d = 2, 3). Therefore, the stochastic solution has a.s. continuous paths in space, while the
Hölder norm bound path-wisely depends on the realization.

3. Special cases

The problem (1.1) is the generalized statement of the ε-dependent stochastic Cahn-Hilliard
equation with multiplicative Fourier noise, smooth in space. We have provided sufficient conditions
for the noise regularity and the noise diffusion σ so that the stochastic solution is regular in space.

In this section we shall consider layered initial conditions of bounded energy as ε → 0 as a special
case. Applying ourH1 estimate, we will prove that on the sharp interface limit ε → 0, the stochastic
solution u converges to ±1 a.s. Moreover, we will present some cases of a mass-conservative noise
definition for which our results are applicable.

3.1. Layered initial data. Under the assumptions of Theorem 2.1, we consider the solution u of
the stochastic Cahn-Hilliard equation (1.1). There, we have assumed that σ satisfies

|σ2(v)f ′(v)| ≤ c

∫
D
F (v)dx+ c, ∥σ(v)∥2 + ∥∇σ(v)∥2 ≤ c

∫
D
F (v)dx+ c∥∇v∥2 + c,

uniformly for any v, and a noise sufficiently regular in space, in H2 for d = 1, or in H3 for d = 2, 3.
In the scaling of the problem, the energy is defined by

(3.1) E(u) :=
∫
D

(ε
2
|∇u|2 + F (u)

ε

)
dx,

see [11].
So, (2.22) yields, when u0 is deterministic

E
(∫

D
F (u)dx

)
+

ε2

2
E(∥∇u(t)∥2) =εE

(
E(u)

)
≤cε2γ + cεE(u0).

(3.2)

3.1.1. Bounded initial energy. Let us consider that the initial data satisfy the condition proposed
by X.F. Chen in [11] for the deterministic version of (1.1), i.e., for σ = 0. More precisely, there the
initial condition

u0(·, 0) := u0(·, 0; ε),
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was assumed depending on ε so that the initial energy of the problem is uniformly bounded by a
constant E0 for any ε ∈ (0, 1]. This means

(3.3) E(u0) =
1

ε
F̃ (u0) =

∫
D

(ε
2
|∇u0|2 +

1

ε
F (u0)

)
dx ≤ E0 < ∞.

Remark 3.1. Let us observe that the above is generally not true for ε-independent u0. Due to the
ε−1 term, and since F is non negative, we have

E(u0) =
ε

2
∥∇u0∥2L2(D) +

1

ε

∫
D
F (u0)dx → ∞ for ε → 0,

unless F (u0) ≡ 0.

From (3.2) we see that the bound (3.3) on E(u0) yields

(3.4)
1

4
E
(∫

D
(u2 − 1)2dx

)
= E

(∫
D
F (u)dx

)
≤ c(ε+ ε2γ).

So, if γ > 0, we obtain

u → ±1 as ε → 0 a.s.

In particular, the next Theorem holds.

Theorem 3.1. Under the assumptions of Theorem 2.1, if u is the solution of the stochastic Cahn-
Hilliard equation (1.1) with initial condition u0 bounded in energy by (3.3), then there exists a
constant c > 0 such that

E(∥u2 − 1∥2) ≤ c(ε+ ε2γ),

and

(3.5) E(∥|u| − 1∥2) ≤ c(ε+ ε2γ).

Moreover, for γ > 0, and any 0 < α < min{γ, 1/2} it holds that

lim
ε→0+

P (∥|u| − 1∥ ≥ εα) = 0.(3.6)

Proof. The first statement of the Theorem follows by rewriting of (3.4) using the L2(D)-norm. The
second one, follows by observing that for all u ∈ R

(|u| − 1)2 =
(u2 − 1)2

(|u|+ 1)2
≤ (u2 − 1)2 = 4F (u).

Using Markov’s inequality and (3.5), we derive (3.6) since

P (∥|u| − 1∥ ≥ εα) = P (∥|u| − 1∥2 ≥ ε2α) ≤ E(∥|u| − 1∥2)
ε2α

≤ c(ε+ ε2γ)

ε2α
→ 0 as ε → 0+.

□

Note that in case of a bounded noise diffusion, the above convergence for d = 1, 2, 3, even only
in L2 in expectation, under the assumptions of Theorem 2.3 (or under weaker assumptions on the
diffusion when d = 1) corresponds to almost surely continuous paths in space.
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3.2. Noise diffusion and mass conservation. Let us state some useful observations on the noise
diffusion σ(u) and mass conservation.

Integration of (1.1) in space, due to the Neumann b.c., gives

∂t

∫
D
u(x, t)dx =

∫
D
εγσ(u)Ẇ (x, t)dx.

An assumption on the noise of the next form

(3.7)

∫
D
σ(u)Ẇ (x, t)dx = 0,

would yield that

(3.8)

∫
D
u(x, t)dx =

∫
D
u0(x)dx = const,

and therefore, a mass-conservative solution.
However, in the general case, since the noise is multiplicative, as σ(u) depends on u, mass

conservation (or equivalently (3.7)) is not holding true.
In what follows, we present some special cases for σ and the Fourier noise, where our results will

be still applicable and the solution will keep the mass conservation property.
When

(3.9) σ(u) := const,

if we assume that the process W satisfies

(3.10)

∫
D
Ẇ (x, t) dx = 0 for any t ≥ 0,

then mass conservation (i.e., (3.8)) holds true.
When only one Brownian motion β is involved in the noise definition, and for

(3.11) σ(u(x, t)) := σ(x),

(1.3) takes the form

(3.12) W (x, t) =
∞∑
i=1

aiβi(t)ei(x) = σ(x)β(t),

where β1 := β, a1e1(x) := σ(x) and ai = 0 for any i ≥ 2. Obviously, the mass conservation
condition (3.8) for this noise is then valid, if σ(x) satisfies

(3.13)

∫
D
σ(x) dx = 0.

4. Appendix

We present first a useful version of Burkholder-Davis-Gundy inequality we used throughout our
manuscript.

Let g = g(x, r) be a Hilbert-space valued process defined for any x ∈ D, and r > 0. By the
Burkholder-Davis-Gundy inequality for local martingales, for any ℓ > 1, and for any 0 ≤ s ≤ t, it
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holds that

E
[

sup
τ∈[s,t]

∣∣∣ ∫ τ

s
(g(·, r), dW (r))

∣∣∣ℓ] ≤cE
[∣∣∣ ∫ t

s
(g(·, r),Qg(·, r))dr

∣∣∣ℓ/2]
≤cE

[( ∫ t

s
∥g(·, r)∥2dr

)ℓ/2]
=cE

[( ∫ t

s

∫
D
|g(x, r)|2dxdr

)ℓ/2]
,

if

∞∑
i=1

a2i < ∞, and thus ∥Q∥ ≤
∞∑
i=1

a2i < ∞. This inequality was used in [2] for s := 0 and for the

general case of t stochastic (stopping time), cf. also in [23] where for g smooth enough so that
∥g(·, r)∥ is continuous, ℓ > 0 can take values below 1.

So, if the Fourier noise satisfies

∞∑
i=1

a2i < ∞, then for any 0 ≤ s ≤ t, we obtain

E
[∣∣∣ ∫ t

s

∫
D
g(x, r)dW (x, r)dx

∣∣∣ℓ] =E
[∣∣∣ ∫ t

s
(g(·, r), dW (r))

∣∣∣ℓ]
≤E

[
sup
τ∈[s,t]

∣∣∣ ∫ τ

s
(g(·, r), dW (r))

∣∣∣ℓ]
≤cE

[( ∫ t

s

∫
D
|g(·, r)|2dxdr

)ℓ/2]
.

Moreover, we present a convenient stochastic version of Gronwall’s Lemma, cf. [2] for a more
general statement.

Let X, F be real valued processes, g = g(x, s) a Hilbert-space valued process on L2(D), and
c ∈ R. If the next inequality is satisfied

dX ≤ cXdt+ Fdt+ (g, dW ),

then

X(t) ≤ ectX(0) +

∫ t

0
ect−csF (s)ds+

∫ t

0
ect−cs(g(·, s), dW (s)).

Note that X, F may dependent on the space variables, but are smooth as functions of x ∈ D.
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