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Cohomology of profinite groups of bounded rank

Peter Symonds

Abstract

We generalise to profinite groups some of our previous results on the cohomology of pro-p groups
of bounded sectional p-rank.

1. Introduction

The purpose of this note is to generalise to profinite groups our results of [6] for pro-p groups
of bounded rank. The main one of these states that amongst the pro-p groups of rank bounded
by a number r there are only finitely many mod-p cohomology rings up to isomorphism. Recall
that rank here means the p-sectional rank, which is the maximum of the ranks of H/K where
H � G and K � H and H/K is an elementary abelian p-group. The generalisation is as follows.

Theorem 1.1. For given p and r, the profinite groups of p-sectional rank at most r have
only finitely many graded isomorphism classes of mod-p cohomology rings between them and
these are all Noetherian.

Another result bounds the dimensions of the cohomology groups.

Theorem 1.2. If G is a profinite group of p-sectional rank at most r, then:

(1) dimFp
Hi(G; Fp) �

(
r(�log2 r�+3+e)+i−1

i

)
, where e = 0 for p odd and e = 1 for p = 2;

(2) there is a function X(p, r) such that dimFp
Hi(G; Fp) � X(p, r) · ia−1, where a is the

maximum rank of an elementary abelian p-subgroup.

In Section 3, we will generalise these results to pro-fusion systems.
The generalisation from pro-p to profinite is much harder than in the finite case, because a

Sylow pro-p subgroup might have infinite index so we cannot use the transfer.

2. Proofs

We fix a prime p; all cohomology groups will have coefficients in Fp and rank will mean
p-sectional rank. A homomorphism of cohomology rings means a homomorphism of graded
rings. A subgroup will always mean a subgroup in the category of profinite groups.

First we prove part (1) of Theorem 1.2. This is proved for finite p-groups in [6, 1.2]. If G
is a finite group with Sylow p-subgroup S, then a standard transfer argument shows that the
restriction map embeds H∗(G) in H∗(S), so the bound hold for G.
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If G is profinite, say G = lim←−G/Ni with the G/Ni finite, then H∗(G) = lim−→H∗(G/Ni). The
ranks of the G/Ni are also bounded by r, so the bound applies to each H∗(G/Ni) and hence
to their direct limit.

Now we prove Theorem 1.1. This is proved for finite p-groups in [6, 1.1] and for pro-p groups
in [6, 1.4]. Let G be a finite group with Sylow p-subgroup S. Restriction embeds H∗(G) in
H∗(S) and the image can be characterised as the subring of stable elements, see, for example,
[2, XII 10.1].

The stable elements of H∗(S) are the x ∈ H∗(S) such that, for any inclusion of a subgroup
iP : P → S and any homomorphism ϕ : P → S induced by inclusion and then conjugation by
an element of G, we have (i∗P − ϕ∗)(x) = 0. The usual version only considers certain subgroups
P , but all the conditions are certainly necessary on the image of H∗(G), so this formulation is
also valid.

By the validity of the result for finite p-groups, there are only finitely many possible
isomorphism classes of rings H∗(S) and H∗(P ). Since H∗(S) is Noetherian, there are only
finitely many graded ring homomorphisms H∗(S) → H∗(P ). Thus there are only finitely many
different conditions of the form (i∗P − ϕ∗)(x) = 0 and hence only a finite number of possible
subrings of stable elements. The cohomology of any finite group is Noetherian. This completes
the case of a finite group.

Since there are only finitely many possible cohomology rings for a finite group of rank at
most r and they are all finitely generated, there is a number N , depending only on p and r, such
that they are all generated in degrees at most N . The dimension of the sum of the cohomology
groups in degrees 0 through N is bounded in terms of r and N , by Theorem 1.2(1), and this
bounds the number of generators needed. The proof of [6, 1.3] now applies verbatim to prove
part (2) of 1.2.

Let G be a profinite group of rank at most r, say G = lim←−G/Ni, so H∗(G) = lim−→H∗(G/Ni).
Thus H∗(G) will also be generated in degrees at most N . Let S be the Sylow pro-p subgroup of
G; then the restriction map identifies H∗(G) with its image under restriction to H∗(S) (because
it does so on each finite quotient). By the pro-p case of the theorem, there are only finitely
many possible rings H∗(S) and the part of H∗(S) in degrees at most N is finite. It follows that
there are only finitely many subrings generated in degrees at most N and these subrings are
all finitely generated and so Noetherian. This completes the proofs of Theorems 1.1 and 1.2.

3. Inflation functors and pro-fusion systems

An inflation functor is defined in [7] (it is called a functor with Mackey structure in [5]). An
inflation functor M is a contravariant functor M∗ from the category of finite groups to the
category of R-modules for some ring R that is also a covariant functor M∗ on the subcategory of
finite groups and injective group homomorphisms. The two structures are related, in particular
the Mackey double coset formula holds. Examples are cohomology H∗(G;R), where the
covariant part is given by transfer and the representation or Green rings, where it is given
by induction.

Such a functor M can be extended to profinite groups by setting M(G) = lim−→M∗(G/Ni),
when G = lim←−G/Ni. This is well defined as a contravariant functor on the category of profinite
groups (and continuous homomorphisms) and the covariant structure is defined on injective
homomorphisms with open image. The Mackey formula still holds. All of this is familiar in the
case of cohomology, where the covariant structure is given by the transfer. We can also use the
same construction on just a contravariant functor on finite groups or finite p-groups to obtain
a functor on profinite groups or pro-p groups, respectively.

An inflation functor is said to be cohomological if M∗(iH) ◦M∗(iH) = |G : H| idM(G) for iH
the inclusion of a subgroup H in G. If this holds for all finite groups, then it holds whenever
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G is profinite and H is an open subgroup. Cohomology H∗(−; Fp) is a cohomological inflation
functor; the usual definition on a profinite group also satisfies the colimit property above.

Pro-fusion systems were introduced in [4] as a generalisation of fusion systems to pro-p
groups. We will freely refer to that paper and use its notation without comment. Roughly
speaking, a pro-fusion system F on a pro-p group S is an inverse limit of fusion systems Fi on
certain finite quotients Si of S.

For any pro-fusion system F on a pro-p group S and any inflation functor M , we define the
stable elements M(S)F to be the submodule of elements x ∈ M(S) such that, for any inclusion
of a subgroup iP : P → S and any homomorphism ϕ ∈ HomF (P, S), we have (i∗P − ϕ∗)(x) = 0
(where we write f∗ for M∗(f)). The method of stable elements, as mentioned above, is usually
stated for cohomology, but the proof applies whenever G is a finite group with Sylow p-subgroup
S, M is a cohomological inflation functor (or just a cohomological Mackey functor on G) and
every rational prime except p is invertible in R, to show that restriction M(G) → M(S) is
injective with image M(S)FS(G), where FS(G) is the fusion system on S induced by G. Our
aim is to extend this to profinite groups.

If G is a profinite group with Sylow p-subgroup S, say G = lim←−G/Ni, then M(G) =
lim−→M∗(G/Ni) ∼= lim−→M(Si)FSi

(G/Ni), where Si = SNi/Ni. There is also a pro-fusion system
FS(G) = lim←−FSi

(G/Ni) on S, which is pro-saturated. Thus what we need is the next result,
which has also been considered in [3]. I am grateful to the authors of [3] for pointing out an
error in my original proof.

Theorem 3.1. Let M be a contravariant functor from p-groups to R-modules, extended to
pro-p groups as above. Let S be a pro-p group and let F = lim←−Fi be a pro-saturated pro-fusion
system on S. Then inflation induces an isomorphism

M(S)F ∼= lim−→M(Si)Fi .

Proof. It is straightforward to show that the inflation maps induce an embedding of
lim−→M(Si)Fi into M(S)F , so we concentrate on proving that this map is surjective. We use
notation from [4].

Because F is pro-saturated, we know from [4, 4.5] that we can take the Fi to be the saturated
fusion systems F/N as N runs through the open strongly F-closed subgroups of S. It follows
that for any P � Si, ϕ ∈ HomFi

(P, Si) and j � i, there is a ϕ̃j ∈ HomFj
(P̃j , Sj) such that

fi,jϕ̃j = ϕfi,j |P̃j
, where fj,k : Sk → Sj is the quotient map and P̃j = f−1

i,j (P ). Similarly, ϕ can
also be lifted to ϕ̃ ∈ HomF (P̃ , S).

Let x ∈ M(S)F ; then x = f∗
j (xj) for some j and some xj ∈ M(Sj), where fj : S → Sj is

the quotient map. The element x satisfies the conditions (iP − ϕ)∗(x) = 0 for all P � S and
ϕ ∈ HomF (P, S).

Let Q � Sj and θ ∈ HomFj
(Q,Sj). Then

fj
∣
∣
Q̃

∗(i∗Q − θ∗)(xj) = (iQfj
∣
∣
Q̃
− θfj

∣
∣
Q̃

)∗(xj) = (fjiQ̃ − fj θ̃)∗(xj)

= (iQ̃ − θ̃)∗f∗
j (xj) = (iQ̃ − θ̃)∗(x) = 0.

Thus there is an � = �(Q, θ) � j such that fj,�|∗Q̃�
(i∗Q − θ∗)(xj) = 0. There are only finitely

many possible different Q and θ so there is a k such that k � �(Q, θ) for all of them and hence
(iQ̃k

− θ̃∗k)f
∗
j,k(xj) = fj,k|∗Q̃k

(i∗Q − θ∗)(xj) = 0 for all Q and θ.
Set xk = f∗

j,k(xj) ∈ M(Sk); we need to show that xk ∈ M(Sk)Fk . Suppose that P � Sk and
ϕ ∈ HomFk

(P, Sk). Let Q = fj,k(P ), then ϕ induces a θ ∈ HomFj
(Q,Sj) such that fj,kϕ =

θfj,k|P . As mentioned at the beginning of the proof, there is a θ̂ ∈ HomFk
(Q̂k, Sk), where
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Q̂k = f−1
j,k (Q), such that fj,kθ̂k = θfj,k|Q̂k

. Thus fj,kθ̂ki
Q̂k

P = fj,kϕ, where iQ̂k

P is the inclusion
of P in Q̂k. Now

(iP − ϕ)∗(xk) = (iP − ϕ)∗f∗
j,k(xj) = (fj,kiP − fj,kϕ)∗(xj)

= (fj,kiQ̂k
iQ̂k

P − fj,kθ̂ki
Q̂k

P )∗(xj) = iQ̂k∗
P (iQ̂k

− θ̂k)∗f∗
j,k(xj) = 0,

as required. �

As was pointed out above, we can now deduce the next result.

Corollary 3.2. Let M be a cohomological inflation functor over a ring R in which every
rational prime except p is invertible, extended to profinite groups as above. Let G be a profinite
group; then M(G) ∼= M(S)FS(G).

This motivates the study of M(S)F for an arbitrary pro-fusion system. There is also a dual
version of this theory that applies to homology.

Theorem 3.3. For given p and r, consider the rings H∗(S)F , where S is a pro-p group
with p-sectional rank at most r and F is a pro-saturated pro-fusion system on S. Then there
are only finitely many such rings up to isomorphism and they are all Noetherian.

Proof. By hypothesis, F can be expressed as an inverse limit of fusion systems Fi on finite
p-groups Si. By Theorem 3.1, H∗(S)F is the direct limit of the H∗(Si)Fi . The finiteness of the
number of rings is now proved in the same way as in the case of finite groups in Theorem 1.1.

For the Noetherian property, we use the fact from [1, 5.2] that each H∗(Si)Fi is Noetherian.
We have just seen that there are only finitely many isomorphism classes of such rings, thus
there is a number N such that they are all generated in degrees at most N . This property
passes to the direct limit, which is H∗(S)F .

We are therefore considering subrings of H∗(S) that are generated in degrees at most N .
But H∗(S) is finite in this range of degrees, so the subrings must be Noetherian. �

Of course, Theorem 1.1 can be seen as a corollary of these last two results.

4. The Steenrod algebra

In any situation where we have only finitely many non-isomorphic cohomology rings and they
are all Noetherian, we also have only finitely many non-isomorphic algebras over the Steenrod
algebra. This is because, on any particular ring, the action of a Steenrod power is determined by
the images of the generators of the ring, by the Cartan formula, and there are only finitely many
possibilities. Also, sufficiently high powers act trivially, because the Noetherian assumption
implies that there is a bound on the degrees of the generators, so these are sent to 0, by the
condition for being unstable.

If we take cohomology with coefficients in the p-adic integers instead of Fp, we get infinitely
many different cohomology rings. This happens even in the case of sectional p-rank 1, which
includes the cyclic groups of p-power order.
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