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Biomechanical measures afhort-term maximal cycling on an

ergometer: a testretest study

An understanding of tesétest reliability is important for biomechanissuch
aswhenassessg thelongitudinaleffect of training or equipmeimterventiors.
Ouraim was taquantify the testetest reliability of biomechanical variables
measurediuring shordterm maximal cyclingFourteen track sprint cyclists
performed 3 x 4 s seatsgrints at 13%pm on an isokinetic ergometer,
repeating the session 7.6 + 2.5 days lakeint moments were calculated via
inverse dynamics,sing pedal forceandlimb kinematicsEMG activity was
measured for 9 lower limb muscldeliability was exploed by quantifying
systematic and random differences wittand betweersessionWithin-session
reliability was better than betweaessions reliability. The testtest reliability
level was typically moderate to excellent for the biomechanical varidizdes
describe maximal cycling. However, some variables, such as peak knee flexion
moment and maximum hip joint power, demonstrated lower religbility
indicatingthat care needs to be taken when using these variables to evaluate
biomechanicathangesAlthough measurement errangtrumentation error,
anatomical marker misplacement, soft tissue art®faah explairsome of our
reliability observationswe speculate thdtiological variability mayalsobe a
contributor to the lower repeatabilibpservedn several variablescluding
ineffective crank force, ankle kinematics dramstringnuscle$activation

patterns.
Keywords:sprint cycling, kinematics, kinetics, emg, maximal power.
Introduction

The eliability of aclinical or sports sciendest is defined as the consistency or
reproducibility of a performance when a test is performed repedtédpkins, Schabort, &

Hawley, 2001) This is an important consideration for researchers, clinicians afiédpp
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sports scientists as the better the reliability of the measurement the easier it is to detect a real
change in outcom@opkins, 2000)If the reliability of a test is lopthen the outcome of a

test may conad the true effect ohnintervention. Converselyf the reliability of a test is not
known then small random deviations may be misinterpreted as a meaningful change in

performancgYavuzer, Oken, Elhan, & Stara008)

Applied biomechanics researchers are often interested in assessing thersaogterm
effects of interventions that aim to improve clinical or sports performance outcomes. In
clinical gait analysisfor examplethe results of biomechanicassessments are used to
inform clinical decision makingy evaluating the effectiveness of interventions such as
surgery, physical therapy, medication or orthotics on gait biomech@#adaba et al., 1989;
McGinley, Baker, Wolfe, & Morris, 2009; Yavuzer et al., 200B)stretest reliability studies
of clinical gait have found that the sagittal plane kinematics and kinetics have high values of
reliability in compaison to the data collected in the transverse and coronal fo&nley
et al., 2009)Furthermorekneeabduction/adduction and hip, knee and foot rotgtant
anglesdemonstrate the lowest reliabilifycGinley et al., 2009)with the size of the
measuremergrrorthe sameorder of magnitudasthereal joint motion in these plands.

the context of clinical gait therefore, reliability studies have proxadaiable by identifying
those variables that need to be interpreted patticularcaution in order to effectively

inform clinical decision makingMcGinley et al., 2009)

An understanding of tesetest rekability has similar relevance when assessing sporting
movements, as biomechanical measures are often used to evaluate the effectiveness of
longitudinal interventions such as changes to training programneegigmmenimodification
(Costa, Bragada, Marinho, Silva, & Barbosa, 2012; Milner, Westlake, & Tate,.ZDjiding

is a commonly used sporting movement for this purpasdéis a relatively constrained
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movement that can be accuratelynipallated(Neptune, Kautz, & Hull, 1997; Neptune &
Kautz,2001) Whi |l st the reliability of submaxi mal
(Bini & Hume, 2013; Hopkins et al., 2001; Jobson, Hopker, Arkesteijn, & Passfield, 2013;
Laplaud, Hug, & Grélot, 2006pnly a small amourily comparisoris known about the

reliability of shortterm maximal cyclingThis comparative deficit existdespitemaximal
cyclingbeing an important paradigm for studying physiological cap&Cibgo & Mora
Rodriguez, 2006)muscle coordination and motorntml strategies, as well as having direct
relevance to a range of competitive cyclpegformanceenvironmentgMartin, Davidson, &
Pardyjak, 2007)Therefore quantifying testretest reliabilityin maximalcycling

biomechanics is importantestretestreliability has beenquantified foroverallnet crank
poweroutputon an inertid load cycling ergometemwithin- and betweersessioCoso &
Mora-Rodriguez, 2006; Hopkins et al., 2001; Mend#ianueva, Bishop, & Hamer, 2007)

with trained cyclistgprodudng reliable powewmithin the first testing sessigqiMartin,

Diedrich, & Coyle, 2000)These studies demonstratedhin-sessiorreliability was better

than betweersessions reliabilityor overall net crank power outp(€oso & Mora

Rodriguez, 2008ylartin et al., 200Q)There have been no studies quantifying the witaird
betweenrsession reliability of biomechanical variables (crank power and forces, joint angles,
angular velocities, moments and powers and EMG activitygHorttermmaximal cgling
despitethese measurdseing important descriptors tife outcometechnique and

intermuscular coordination afmovemen{Brochner Nielsen et al., 2018; Jac&bsan

Ingen Schenau, 1992; Wakeling, Blake, & Chan, 20ER)G activity can be used to

determine muscle activation onset and offset times and level of acti@boel, Guilhem,
Couturier, & Hug 2012; Hug & Dorel, 2009)This is important when investigating
intermuscular coordination in cycling as the timing and magnitude of muscle activation has to

be coordinated appropriately to allow an efficient energy transfer from the muscles though



77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

thebodysegments to the ped@eptune & Kautz, 2001; Raasch, Zajac, Ma, & Levine,

1997) Joint kineticmeasurs (moments and powers) at the hip, knee and ankle throughout
the pedal revolution describe the action and contribution of the joints to pedal power and can
be used to identify different coordination stratediesveen cyclistéElmer, Barratt, Korff, &
Martin, 2011; Martin & Brown, 2009; McDaniel, Behjani, Brown, & Martin, 2Q14)

Combining information on muscle activation from EMG and joint kinetics from inverse
dynamicsanalysisprovidesa deeper understanding of the joint and muscle actions that
produce the movemerdand hence both are required to describe intermusooadadinationin
maximal cyclingand were choseior measurement and analydisring maximal cycling

(Brochner Nielsen et al., 2018; Dorel, 2018)

The aimof this studywas toquantify thetestretestreliability of kinematic, kinetic, and
muscle activatiowariablesduring maximakgprint cycling. We hypothesise that within

session reliability would be better than betwsessions reliability.

Methods

Participants

Fourteen track sprint cyclists participated in the study. Participants regularly competed at
track cycling competitions& i t her Master 6s i nternational
national level (4). Although the participants were varied in their anthropiesi@males

and7 femalesage:40.5+ 17.7yr, body mass725 * 8.5 kg, height: 171 £ 0.06 m,), they
weresimilar with respect to cycling performance levigliig 200m personal bestl1.98+

0.90 ). Participants were provided with study details and gawtgen informed consentlThe
study was approved by the Sheffield Hallam University Faculty of HealtMéaiiibeing

Research Ethics StBommittee.
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Experimental protocol

An isokinetic ergometer was set up to replicate each participant's track bicycle p@édition
participantsd crank | engths were set to 165
bicycles.Riders undertook their typical warap on the ergometeat seltselected pedalling

rate and resistander at least 10 miates,followed byonefamiliarisation sprin{4 sat 135

rpm). Martin and colleagues demonstrated that trained cyclists can produce valid and reliable
results for maximal cycling powémom the first testing sessigiMartin et al., 200Q)

therefore one familiarisation sprivas deemedppropriateRiders then conductetix 4 s

seated sprints at a pedalling rate of 3% on the isokinetic ergometer with 4 minutes

recovery between effortRarticipantsindertook an identical sessidtb + 2.5 days apartat
approximately thsame time of dag0.11+ 2.18 h) A pedalling rate of 135m was chosen

as this isatypical pedalling rate during the flying 200 event in track cycling and within the
optimal pedalling rate range for track sprint cycl{®srel et al., 2005) The competitive

level and typical training volume of our participants meant that it was not feasible to ask them
to stop exercising 24 hours prior to the testing sessions, so instgadkereinstructedo

undertikethe same traininm the preceding 2hoursbefore both sessions

Isokinetic ergometer

A SRM Ergometer (Julich, Germany) cycle ergometer frame and flywheel were used to
construct an isokinetic ergometer. The modified ergometer flywheel was driven bik\& 2.2
AC induction motor ABB Ltd, Warrington UK). The motor was controlled by a frequency
inverter equipped witl braking resistor (ModelAltivar ATV312 HU22 Schneider Electric
Ltd, London, UK).This setup enabled the participants to start their baitthe target
pedalling rate, rather than expending energy in accelerating the flywiheetrgometer was

fitted with Sensix force peda(®odel ICS4, Sensix, Poitiers, Fran@a)d a crank encoder
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(Model LM13, RLS, Komenda, Slovenjesgampling data at 208z. Normal and tangential
pedal forces were resolved using the crank and pedalsantgiéhe effective (propulsive)

and ineffective (applied along the crank) crank fofEégurel).

Kinematic andKinetic Data Acquisition

Two-dimensional kinematidataof the participants' left side were recor@gd 00Hz using

onehigh speed camera with infrad ring lights Model: UI-522xREM, IDS, Obersulm

Germany. The camera was perpendicular to the participant, centred on the ergometer and set
about 3 m from the ergometer. The camera was in a very similar position for both sessions.
Reflective markers were placed on the pedaldipi lateral malleolus, lateral femoral

condyle, greater trochanter aifidlc crest The same researchattacled the markers for all
sessionsKinematics and kinetics on the ergometer were recorded by CrankCam software
(Centre forSportsEngineeringResearchSHU, Sheffield, UK)which synchronised the

camera and pedal force déteown sampled to 100 Hp match the camera datafjd was

used for data processingcluding autetrackingof the marker positions

EMG Data Acquisition

EMG signals were morded continuously frominemuscles otheleft leg vastus lateralis
(VL), rectus femorigRF), vastus medialivM), tibialis anterioTA), long head of biceps
femoris(BF), semitendinosuéST), lateralis gastrocnemiy§&L), soleugSO) and gluteus
maximus(GMAX) with Delsys Trigno wireless surface EMG sensors (Delsys Inc, Boston,
MA). The skinat electrode placement siteas prepared by shaving the area then cleahing
with an alcohol wipeThe EMG sensors were then placed in the centre of the muscle belly
with the bar electrodes perpendicular to the muscle éibemtation using the guidelines in

(Konrad, 2005pandsecured using wrage reducemotion artefacts during pedallinghe



147 same researchattacted the EMG sensors fail sessionsA Delsyswirelesssensor

148 containingan accelerometer (148 Hz sampling ratey attached to tHeft crank arm to

149 obtain a measure ofank anglesynchronisedvith the EMG signalsThe EMG systemvas

150 operated and recorded in EMGworks Acquisition softwBsys Inc, Boston, MA)

151 sampling datat 192 Hz. The Delsys trigno EMG system automatically applied a bandwidth

152 filter of 20 £ 5 Hz to 450 £ 50 H{z80dB/deq to the raw signals.

153 DataProcessing

154  All kinetic and kinematic data were filtered using a Butterwéwthrth order(zerclag) low
155 pass filter with a cut éffrequency of 14z selected usingesidual analysiéWinter, 2009)
156 The same cut off frequency walsoserfor thekinematic and kinetidataas recommended
157 by Bezodis and colleagués avoiddata processingrtefactan the calculated joint moments
158 (Bezodis, Salo& Trewartha, 2013)Instantaneousrank power was calculated from the
159 product of the left crantorqueand the crank angular velocitihe average left side crank
160 power was calculated lweragingheinstantaneousrank power over a complepedal

161 revdution. Owingto a technical fault with the force measurement in the right pi:deds
162 not possible to calculate to@erage crank power per revoluti@um of left and right crank
163 powes). Joint angles were calculated using the convention showigiime 1. Joint moments
164 were calculated via inverse dynam{&ftman, 1939) using pedal forcedimb kinematics,
165 and body segment parametéds Leva, 1996)Joint extension moments were defined as
166 positive and joint flexion moments as negatiVke joint moments angresentedrom the

167 internalperspectivéDerrick et al.2020) Joint powersat the ankle, knee and hip were

168 determined by taking the product of the net joint moment and joint angular velocity.

169 InsertFigurel
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Data were analysed using a custom MafRP017a, MathWorks, Cambridge, UKgript.

Each sprint lasted for 4 s providing six complete crank revolutions which were resampled to
100 data points around the crank cy€eank forcesandpowersjoint angles, angular

velocities momentsand powers were averaged over these revolutions to Gbsangle

ensembleaveraged time series feach trial.

The accelerometer data for the crank arm was filtered using a Butterworth fourth order low
pass filter with aut off frequency of @ Hz. The minimum value of the acceleration of the
sensolin the direction of the crank aroorresponddto top dead centre (TDQ@rank

position To synchronise the EMG data with the kinematid kineticdatg the TDC

locations fom the accelerometer on the crank avarematched to the corresponding TDC

measured by the crank encoder.

Theraw EMG signals for the sprint effortgerehigh pass filteed (Butterworth second order,
cut off frequency 30 Hz) to diminish motion artefa@e Luca, Gilmore, Kuznetsov, & Roy,
2010) root mean squarddRMS, 25 mswindow) and therlow pasdiltered (Butterwath
secondrder, cut off frequency 2 Hz) (BrochnerNielsen et al., 2018¥he data were then
interpolated to 100 data points around the crank cycle and then averaged over 6 crank
revolutions to create a linear envelope for each mushle EMG signals were normalised to

the mean valu@ the linear englope across the crank cyéte each muscle.

StatisticalAnalysis

In order to test for any systematic chanmgperformancdetweenrsessiongfor example due
to learningor fatigueeffectg pairedt-tess were used to compare differences between
discretevalues Pairedt-tests only test if there is a statistically significalstslkbetween

sessiongsystematic changéut provide no indicationfahe random error due to biological



193 or mechanical variation betwesessiongAtkinson & Nevill, 1998) Similarly, differences
194 intime series datdr(stantaneous crank powecsank forcesjoint angles, angular velocities,
195 moments, powers and normalised EMG linear envaeldpetweensessions were assessed
196 using StatisticAParametric Mappig (SPM), pairedt-testswere usedor all variables except
197 crank forces wh €TftestwasosedPhtaky, B0OGXCsankdoace comsidts
198 of two vector components (effective aineéffective crank forcethereforea multivariate

199 statistical testvas requiredPataky, 2010)The level ofstatisticalsignificance was sebp <

200 0.05for all tests

201 The reliability of the discrete variables between sessions was assessed usiigsatra
202 correlation coefficient (ICC) tests. CC 6 s we r e ing|BM SPGI Hatistiad Vensmon
203 24 (IBM UK Ltd, Portsmouth, UK)based on average measures, absoluteagmet two-

204 waymixed effects modglICC (3K) - wherek is equal to the number of trials a session
205 which in this study ishree).The ICG were interpreted using o o a ngdidelinesbvalues
206 less than 0.50 are indicative of paeliability, betweerD.50 and 0.75 indicasenoderate

207 reliability, 0.75 to 0.90 indicategood reliability and .90 indicats excellent reliability

208 (Koo & Li, 2016) For a variable to be considered as having excellent relighility upper
209 and lower boundsf the 95% confidence intervatsust fall within the excellent randee. >

210  0.9)(Koo & Li, 2016)

211 Standard error of measuremdéBEM) for between sessions was calculated using the farmu

212  (Weir, 2005) where SD is standard deviation of the mean difference

213 YOO YOp 06 §

214  Minimal detectable difference (MDD) was calculated for between sesssomy the formula

215  (Weir, 2005)
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The coefficient of variation (CWvascalculated for the average crank power over a complete

revolution(Hopkins, 2000)

The standard error of measurement (SEM) wasutatked for the kinematiandkinetic time

series data to evaluate the reliability of these waveforms wilnith betweersession using

the methods described kini, Markstrom, & Schelin, 2019he mean and SD SEM for a
complete revolution was calculateat each variableThe EMG data were visually inspected

for signal quality and the frequency spectrum of the raw and filtered EMG signal calculated.
EMG signals with a high frequency content below 20 Hz, indicates low frequency noise due
to movement artefagDe Luca et al., 201@nd therefore, these trials were discarded. The
SEM for within- and betweersession for the EMG linear envelopes of the VL, VM, ST, and
GMAX muscles were calculated using @drticipants. At least 2 trials for each muscle per
session per participant were required to calculate SEM. The calctdéigdality of the EMG

data is therefore the upper bound, as very noisy trials were discarded.

Thecrosscorrelationcoefficient R) was calculated to compare the tempeféctsof
within- andbetweenrsessiorEMG linear envelope@Nren, Do, Rethlefsen, & Healy, 2006)
The betweersessios crosscorrelation coefficient was calculated compariing session
mean EMG linear envelope, and witkgassion the crosorrelation coefficientvas

calculateccomparing the EMG linear envelope faro trials.
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Results

Discrete variables

Discrete cank level variables demonstrated good to excellent betaessios reliability
ICC(3K) > 0.7% (Tablel). Average crank power fa complete revolution for the left side
onlywas 445.3 + 95.7 amtB38.8 + 111.8V for session 1 and 2 respectivéRablel), which
gives an indicative total power fa complete revolutigrfor both cranksof 891 and 878 W.
MDD betweensessions fopeakcrank power and forcasas 2 W and between 9to 72 N
respetively (Tablel). Peak pint anglevaluestypically demonstratedhoderate t@xcellent
reliability, with MDD betweersessions from 1.1 to £.4Tablel). Peak pint angular
velocity betweensessios reliability was typically moderate to excellerkcept forpeak
knee flexion and hip extension angular velogityich hadpoor to good reliabilitfTablel).
MDD betweensessiongor peakjoint angular velocities rayed from 14 to 9°/s (Table J.
Peak pint momens demonstrated moderate to excellent betwsassios reliability, except
for peakknee flexion momenwhich demonstratepgoorto moderateeliability (Tablel).
Maximum ankle and kneegint powers demonstratemodto excellent reliability between
sessionsvhereasmaximum hip power showegubor togoodreliability (Tablel). MDD
betweenrsessions fopeakjoint moments ranged from 2 t® Rl.m and for maximunjoint

powerss 30to 144 W.

InsertTablel

CV for average crank power over a revolution wé&st31.5% and4.6 £ 1.9% for within- and

betweenrsession respectively.
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Time Series Variables

Crank power demonstrated excellent withand betweersessiorreliability, with a mean
SEM betweersessions over a complete revolution of 46.6 + 9.Fyure2, Figure3).

Crank power was significantly differerpp € 0.05) betweesessios one andwo, between
crank angle840 to 6° (7.2% of crank cyclé (Figure2). The ineffective crank force was less
repeatablémean SEM= 31.6 + 18.2 Nithan effective crank forcgnean SEM= 19.8 + 4.0
N) within- andbetweersessionwhich was associated with a lar§EM for ineffective crank
force between crank cycles of 140° and 2E§ure4, Figure5). The crank forcewere
significantly different p < 0.05) between sessi®one and twobetweercrank angle491 to

199 (2.2% of crank cycle, and 347 and“1(3.9% of crank cycleFigure4).

Joint angles and angular velocities demonstrated excellent watihbetweersession
reliability(mean SEM O 2)(Bidure). Ankle jBidt angles /arsl angular
velocities were less repeatable thlose athe knee and hip joiatAnkle joint angular
velocity was significantly differenfp(< 0.05) between sessions arel two, between crank

angles 152 to 1705.0% of crank cyclejFigure6).

Joint moments and powers demonstraigasonablevithin- and betweersessiorreliability
(mean SEM .nGandl62.6 W(Figure6, Figure7). Hip joint moments and powers

were less repeatable théose athe knee and ankle jointgarticularly aroundhe location

of maximum hip extension moment and poweigre7). Ankle joint moment was

significantly different p < 0.05) between sessions one and two, between crank angles 340 to
6° (7.2% of crank cycle)Rigure6). Hip joint power was significantly differenp 0.05)

between session one and two betwermmk angle840to 2° (6.1% of crank cyclg (Figure

6).
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EMG linear envelope normalised to the meatue in the signalemonstrated high within
and betweersessiorreliability (Figure8). Mean SEMvaluesfor EMG linear envelopes
rangedbetweer0.14to 016, and0.16to 020 proportion of the mean EMG signfdr
within- and betweersession respectivelyhE GMAX, TA, andBF musclesdemonstratd
the lowest reliabilityfor EMG activity, and thevVL and VM muscleghe highest reliability
(Figure8). Thecrosscorrelation coefttient R) which compaestiming of EMG linear

envelopedetweenrsessionsanged from 0.86to 0.90 (Figure8).

InsertFigure2, Figure3, Figure4, Figure5, Figure6, Figure7, Figure8

Discussionand implications

The purpose of this study was to quantify the-tetdst reliability of kinematic, kinetic, and

EMG muscle activation variableseasurediuringshorttermmaximal sprint cyclingOur

main findingswere that betweesessions tegetest reliability level was typically moderate

to excellent for the biomechanical variables that describe maximal cycling, and furthermore
thatwithin-session reliability was better than betweaessios reliability. However, some
variables, such as peak knee flexion moment and maximum hip joint power demonstrated
lower reliability, indicating that care needs to be taken when using these variables to evaluate

changes in maximal cycling biomechanics.

Within- and betweersession values &EM for joint angles and angular velocities
demonstrate high reliability (Figure6). We found thaankle joint kinematics &ngle and
angular velocitywere less repeatableathknee and hip joirkinematics, evidencedy the
larger mean SEM valuder the ankle joint kinemats. Thesource of tk lower reliabilityin

our ankle joint kinematics dats.not clear, although it seems unlikely to be a measurement

error, given that anatomical landmark marker placement errors for the lower limb are greatest
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at the hip, rathethan heankle joint(intra-examiner precision for the greater trochanter
marker is 12.2 mm along the long axis of the femur, and 11.1 mm in the aptesterior
direction, compared to lateral malleoh8.6 mm along the long axis fibula, 2.4 namterior
posterior direction{Della Croce, Cappozzo, & Kerrigan, 1999; Della Croce, Leardini,
Chiari, & Cappozzo, 2005Furthermorethe ft tissue artefact (STA) of the lower limb
markers in cyclings alsolargest for théip rather than the ankle joifdreater trochanter
markerdisplacemenat 30 rpmsubmaximal cycling37.3 mm anterieposterior and 10.3 mm
proximaktdistal compared to the lateral malleolus 15.8 mm antgrasterio and 8.6 mm
proximatdistal) (Li et al., 2017) By comparisonhere argotentialbiological explanations
for the lowerreliability of the ankle joint kinematic#lartin and Nicholsfor example,
demonstratethat theankle has a different role to the knee and hip jomtaaximal cycling
and acts to transfelinstead of maxinge power(Martin & Nichols, 2018)More specifically
the ankleworksin synergy with the hip joint to transfer power produbgdhe muscles
surroundinghe hip jointto the cranKFregly & Zajac, 1996)Our resultsupportthis notion
by suggesting that cyclisteayregulate tieir ankle angle agartof this hip-ankle synergyin
order to maintain a stable effective crank forsespecially designed experiment would be

required to test this hypothesis.

In terms of joint kinetics, joint moments apdwers demonstratddwer reliability at more
proximalcompared talistal jointsi with thelargestvalues of SEMor the hip jointmoment
(Figure®, Figure7). This observation may laiue to theSTA and skin marker misplacement
errors being largest at the hip jgias discussed aboy@ella Croce et al., 1999; Li et al.,
2017) It may also belueto the fact that measurement errors in general (STA, marker
misplacement, force pedal measurement precision) will propagate through the inverse

dynamics calculation@yers, Laz, Shelburne, & Davidson, 2015) either scenario, this
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indicates that the observed differences in proximal to distal joint reliability are likely to be

due to measurement error, rather than biologicahlgity.

The peak knee flexion moment showed poor to moderate betessions reliabilitywith
the largest MDDof all joint momentg26 N.m). Error due to knee marker misplacemisnt
dependent on knee flexion anghéth previous studies demonstratithgit the greater the
knee flexion, the larger error in the joint an{fDella Croce et al., 1999\ arker
displacementould thereforeexplain the poor reliability odur peak knee flexion angular
velocity and morentdata Further work is required, using more detailed marker sets and
models of STAto reduce the influence of STA and skin marker misplacement on the
calculated kinematics and kinetic variables, which may improve the reliability of the

calculated kne#lexion and hip joint variables.

Averagecrankpower outpubver a complete revolutiomas highly reliabldothwithin- and
betweenrsessionsupporing the findings of Martin and colleagues that trained cycésts

able to reroduce reliable maximal crank poweithin onetesting sessio(Martin et al.,

2000) Effective crank force exhibited similar reliability to crank poywehereasneffective
crank forcedemonstrated lower withirandbetweersession reliabilityvhich wasassociated
with the large intrgparticipant variabilityand SEMin ineffective crank force between crank
angles of 140° and 21QFigure4, Figureb). Itis unlikelythatt or ce pedal s6 meas.
precision wouldorovide an explanation for teeobservedifferencesin reliability between

the effective and ineffective crank forcggven hatthe measurement precision values are the
same for all components of forta the instrumented pedalge used(combined error

linearity and hysteresis 1% measuring range (MR)aasistalk between the components

(<1.5% MR) (Sensix, Poitiers, FrangeThereforgit seems probable that the reliability
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difference between effective and ineffective force may have a biological basis, a notion

which can be expanded upon using our EMG results.

EMG linear envelopegenerallydemonstrateéxcellent reliability(Figure8). However, the
GMAX, BF and the TA muscles demonstrated the lowest reliability for EMG acthatyer
reliability of the EMG activity for the GMAX and TA muscles have been demonstrated in
submaximal cycling(Jobson et al., 2013) he betweenrsessionseliability of theEMG

activity of theGMAX musclehas been shown tiecreas with increasing workload
(betweenrsessions CV = 43.1% at 265 sgmpared taCV = 23.0 at 135 W/(Jobson et al.,
2013)which might suggest greater biological variatinothe GMAX muscle activitywith
increased workloggotentially explaiing the lower reliability of the GMAXEMG activity.
Jobson andolleaguesuggested the lower reliability of the EMG activity for the TA muscle
might beowingto the fact some cyclistravetwo bursts of muscle activity per crank
revolution which may introduce more betweamankrevolution varability (Jobson et al.,
2013) Measurement error could also be a potential source of the lower reliabilitg EMG
activity for the TA, as thdocationof the EMG sensor can strongly influence the pattern of
EMG activityrecorded owing to crosstalk from the penssi®ngus muscleluring dynamic
movementgCampanini et al., 2007; Hug, 201Therefore small changes in positioning of
the EMG sensor between sessions could influence the EMG activity measueadnd
colleagues suggested the lower reliability of the hamstrings may be due to measurement error
reflecting the increased sensitivity of thesescles to electrode placement owing to muscle
length and overlying fat mag#/ren et al., 2006)Thelower reliabilityof EMG activityin

the BF hamstringnusclemay also have a biological basis however, givehdhafindings

are consistenwith other studiesvho siggesthat this isrelatedto their btarticular function

(Ryan & Gregor, 1992Van Ingen Schenau and colleagfmsexampledemonstrated that



373 the biarticular muscles are important for controlling the direction of the external force on the
374 pedal(van Ingen Schenau, Boots, De Groot, Snackers, & Van Woensel, TH8g)

375 identified that the paradoxicabactivation of the monarticular agonists (vastii) with bi

376 articular antagonists (hamstringshergeso the biarticular muscles can help control the

377 desired direction of the force applied to the pedal by adjusting the relative distribution of net

378 momaents over the jointgvan Ingen Schenau et al., 1992)

379 On a mechanical basis, theaj of maximal cycling is to maxirse the effective crank force
380 as this maximises the propulsive power and thuspleed othe bicycle.Taking our crank
381 force and EMG data togethitrerefore our resultsallow us tospeculate that cyclistaay

382 regulatebi-articular muscleactivation to controthe direction of the pedal forceith the

383 aimof maximisingeffective crank force and maintaig a stable outcome at the expense of
384 theineffective force which does ndirectly affect the task outcomé&he biarticular muscles
385 (BF, ST and GL) are active in the region of the crank cycle where the ineffectikesran
386 more variable which could explain thelogical mechanism underlying this findinthis

387 principle has been observed in walkifgadaba et al., 1989; Giakas & Baltzopoulos, 1997)
388 andrunning(Kinoshita, Bates, & DeVita, 1985\here the propulsion and braking ground
389 reaction forces (anterigrosterior and vertical direction) have been shown to have lower
390 betweenstride variability than the mediateral force However further, purposefully

391 designed experimengserequired to confirm or refute these speculations.

392 SPM indicated a significant betwesassion difference for small regions of the crank cycle,
393 for crank power, crank forces, ankle atagwelocity and moment, and hip power. These
394 differencesare unlikely to beneaningfulchangess thesare less than 7.2% of the crank

395 cycle, and typically occur in regions of low magnitude in these variables.
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The experimental protocol could hawroducedsomevariability to the kinematigsas

although the participants were instructed to remain seated during the sprints on the ergometer,
they tended to hover slightly over the saddle (potentially with the aim to increase crank
power), which increses pelvis movement. Also, the ergometer wasigé¢bd matcteach

participanés track bike Therefore saddle height was not standardisegeocentage of inside

leg lengthwhich is often recommendéde Vey Mestdgh, 1998) Some of the participants

had a relatively low saddle height compared to their leg length, which resulted in relatively
large pelvis obliquity (rocking) anmansverseotation when they sprintedhis strategynay
haveintroduced more withinand betweeitrial variability, particularly at the hip jointVe
acknowledge that we measured 2D kinematics using adpigld video camera, which is not
considered he 6gol d standardé for measuring KkKinem
(Fonda, Sarabon, & Li, 2014lowever, these methods were utilised becausiig cycling

the movement is predominantly in the sagittal plwmberger &Martin, 2001; van Ingen

Schenau, Van Woensel, Boots, Snackers, & De Groot, EfaDherefore previous studies

that have investigated maximal cycling have just considered the sagittal plane actions, as this
is the plane where muscles produce powegetterate effective crank for¢Barratt, Korff,

Elmer, & Martin, 2011; Elmer et al., 2011; Martin & Brown, 2009; McDaniel et al., 2014)
Thereforewe measure@D kinematics in the sagittal plane using a simple markevtseh

has the added benefit of reducing time required for data collection sessions which is an

important ethical consideration when working with elite athletes.

Conclusion

Typically, the biomechanical variables that describe maximal cyeliageliable However
somevariables have lower reliabilityindicating that care needs to be taken when using these

variables to evaluate changes in maximal cydiimmechanicsOur results allow us to
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speculate thatiblogical variabilityis the source ahe lower eliability of the ineffective
crank force, ankle kinematics and hamstring muscles activatida measurement error is
the source of the lower reliability in hima knee joint kineticd-urther researctsing
purposefully designed experiments is required to confirm or refute these speculgons.
recognise thatherewere some data collection problemsify EMG data and no right force
pedaldata) whichmight indicate potentidy lower reliability of our data collection method.
Thesereliability data can be used to helpderstand thpracticalrelevanceof alongitudinal

intervention on athletésnaximal cycling performance.
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Table 1. Betweensessions reliability for kinematic and kinetic variables, * indicatesignificant difference between sessior(p < 0.05)
ICC(3,k) = Betweensessionsntraclass correlationwith lower (LB) and upper (UB) bound confidence intervals SEM = standard error

of measurement, MDD = minimal detectable difference



Variable Units Mean(SD) Mean difference P ICC 95% 95% SEM MDD

Session 1 Session 2 (3,k) LB uB

Power (averagtor left crank) W 445.3+ 95.7 438.8+ 111.5 -6.5 0420 0979 0.938 0.993 4.3 12
Pedalling rate rpm 134.8+ 1.3 134.7£ 1.4 -0.2 0.021* 0.986 0.935 0.996 0.0 0.1
Max effective crank force N 593.3+126.2 579.0+ 130.9 -14.4 0.072 0.986 0.952 0.996 3.2 9

Max ineffective crank force N 603.5+ 172.1 605.3+ 165.4 1.8 0.944 0923 0.756 0.975 25.9 72
Min ineffective crank force N -192.7+ 65.2 -207.3+ 82.3 -14.7 0.136 0.937 0.805 0.980 8.7 24
Max instantaneous crank power w 1387.2+ 309.2 1348.4+ 316.5 -38.7 0.043* 0.986 0.946 0.996 7.7 21
Peak ankle plantarflexion angle ° 141.7+11.3 142.3+11.5 0.6 0.446 0.983 0.948 0.994 04 1.1
Peakankle dorsiflexion angle ° 113.1£5.0 113.8+5.8 0.7 0.281 0.955 0.863 0.985 0.5 1.3
Peak knee extension angle e 142.7+ 6.4 143.5+ 5.7 0.8 0.489 0.864 0.580 0.956 1.6 4.4
Peak knee flexion angle ° 70.0+ 3.6 70.2+3.4 0.2 0.715 0.857 0.550 0.954 1.0 2.6
Peak hip extension angle ° 68.1+5.0 68.4+ 4.6 0.3 0.720 0.893 0.665 0.966 1.0 2.8
Peak hip flexion angle ° 26.1+ 4.3 25.6x4.2 -0.5 0.447 0916 0.746 0.973 0.7 1.9
Peak ankle plantarflexion angular velocity °/s 236.6+ 65.7 247.1+ 65.0 10.4 0.441 0.839 0.509 0.948 19.7 55
Peak ankle dorsiflexion angular velocity  °/s -262.0+91.2 -268.5+ 107.2 -6.6 0.561 0.957 0.868 0.986 8.6 24
Peak knee extension angular velocity °ls 472.8+43.2 479.1+ 33.8 6.3 0.434 0.838 0.504 0.948 11.8 33
Peak knee flexion angular velocity °ls -507.5+57.6 -513.3+43.6 -5.8 0.635 0.772 0.279 0.927 214 59
Peak hip extension angular velocity °ls 265.6+ 29.1 273.8+21.9 8.2 0.141 0.814 0.447 0.939 85 24
Peak hip flexion angular velocity °ls -277.6x 30.7 -273.4+ 35.1 4.2 0.390 0.924 0.769 0.975 4.9 14
Peak ankle plantarflexion moment N.m 78.6+18.6 81.4+20.2 2.8 0.372 0.910 0.729 0.971 34 9

Peak ankle dorsiflexion moment N.m -14.0£ 7.0 -12.3+6.0 1.8 0.049* 0.928 0.743 0.978 0.8 2

Peakknee extension moment N.m 90.0+34.5 82.9+ 335 -7.1 0.028* 0.965 0.852 0.990 2.0 6

Peak knee flexion moment N.m -50.7+20.9 -57.7+£15.0 -7.0 0.151 0.697 0.127 0.900 9.4 26
Peak hip extension moment N.m 132.3+30.7 140.4+ 32.8 8.1 0.086 0.919 0.737 0.974 4.6 13
Peak hip flexion moment N.m -47.7+26.1 -41.3+17.0 6.5 0.115 0.870 0.600 0.958 5.1 14
Maximum ankle power W 259.6+ 111.7 258.5+ 107.8 -1.1 0.937 0.951 0.846 0.984 10.9 30
Maximum knee power w 659.6+ 321.7 620.4+ 253.6 -39.2 0.160 0.968 0.901 0.990 17.6 49

Maximum hip power W 519.8+ 186.3 578.1+153.0 58.3 0.104 0.826 0.474 0944 52.1 144
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Figure 2: Crank power: group means for session one and two. Aes of the graph

shaded grey where theéStatistical parametric mapping (SPM) is significant.
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(b) over complete crank cycle.
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shaded grey where theStatistical parametric mapping (SPM)is significant.
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Figure 7: Joint angles, angular velocities, momentand powers: standard error of
measurement (SEM) within and betweensession. Mean and standard deviatioof

SEM within -session (w) and betweesessions (b) over complete crank cycle.



Figure 8: EMG linear envelopes (normalised tanean value in signal) for each muscle:
group means for session one and twand standard error of measurement (SEM)
within - and betweensessionVL = vastus lateralis, RF = rectus femoris, VM = vastus
medialis, TA = tibialis anterior, BF=biceps femoris, ST= semitendinosus, GL =
gastrocnemius lateralis, SO = soleus, GMX = gluteus maximus.Mean and standard
deviation of SEM within-session (w) and btweensessions (b) over complete crank

cycle.



