Manuscript title: Sex-related changes in physical performance, wellbeing and neuromuscular function of elite Touch players during a four-day international tournament.
Abstract

Purpose: To examine the within- and between-sex physical performance, wellbeing and neuromuscular function responses across a four-day international touch rugby (Touch) tournament.

Methods: Twenty females and twenty-one males completed measures of wellbeing (fatigue, soreness, sleep, mood, stress) and neuromuscular function (countermovement jump (CMJ) height, peak power output (PPO) and peak force (PF)) during a 4-day tournament with internal, external and perceptual loads recorded for all matches. **Results:** Relative and absolute total, low- (females) and high-intensity distance was lower on day 3 (males and females) (ES = -0.37 to -0.71) compared to day 1. Mean heart rate was possibly to most likely reduced during the tournament (except day 2 males) (ES = -0.36 to -0.74), whilst RPE-TL was consistently higher in females (ES = 0.02 to 0.83). The change in mean fatigue, soreness and overall wellbeing were unclear to most likely lower (ES = -0.33 to -1.90) across the tournament for both sexes, with greater perceived fatigue and soreness in females on days 3-4 (ES = 0.39 to 0.78). Jump height and PPO were possibly to most likely lower across days 2-4 (ES = -0.30 to -0.84), with greater reductions in females (ES = 0.21 to 0.66). Wellbeing, CMJ height, and PF were associated with changes in external, internal and perceptual measures of load across the tournament (η^2 = -0.37 to 0.39). **Conclusions:** Elite Touch players experience reductions in wellbeing,
neuromuscular function and running performance across a 4-day tournament, with notable differences in fatigue and running between males and females, suggesting sex-specific monitoring and intervention strategies are necessary.
Introduction

Touch rugby (Touch) is an intermittent team sport that is played globally at regional, national and international standards, and is characterised by frequent periods of high-intensity activity interspersed with periods of passive recovery during interchanges.1-3 The use of microtechnology that incorporates a global positioning system and accelerometer have been used extensively in team sports, though limited studies have documented the internal and external demands of Touch, with research limited to single-sex teams, using a single match1,3 and one across an entire tournament.2 For a single match, it was reported that international male players perform \sim9 bouts of activity each lasting approximately 148 seconds, resulting in a mean playing time of 16.52 ± 5.50 minutes.1 During this time, players cover mean total, low-intensity ($< 14 \text{ km}\cdot\text{h}^{-1}$), high-intensity ($> 14 \text{ km}\cdot\text{h}^{-1}$) and very high-intensity ($> 20 \text{ km}\cdot\text{h}^{-1}$) distances of 2266 ± 594 m (137 ± 13.6 m·min-1), 1651 ± 594 m (98.2 ± 6.4 m·min-1), 620 ± 155 m (39.3 ± 12.0 m·min-1) and 119 ± 60 m (7.67 ± 4.40 m·min-1), respectively.1 During the course of an international competition, female players competed in 9-10 matches over four consecutive days with high-intensity distance (i.e. match 1 = 29.3 ± 14.8 m·min-1) greatest on day one but progressively declining by day three (i.e. match 7 = 18.2 ± 96.9 m·min-1).2 Furthermore, Marsh et al.2 reported on the change in time spent at high metabolic power (20 W·kg-1), which
was reduced on day three compared to day one. The use of high
metabolic power, alongside more traditional measures of
movement, offers a more comprehensive appraisal of the load
imposed on athletes where multiple directional changes are
involved. Research using a range of movement characteristics
is warranted to report the loads imposed on elite Touch players
of both sexes during a tournament and to what extent these
loads change in subsequent matches.

International Touch players typically compete in a tournament-
style competition that comprises multiple matches over a three-
or four-day period. The neuromuscular, physiological and
cognitive perturbations associated with team sport athletes
involved in congested fixtures is of interest given the potential
negative impact on players’ wellbeing and physical
performance as well as potential for increased injury risk.

During a two-day international rugby sevens competition where
female players competed in 4-6 matches, perceived wellbeing
decreased substantially with players reporting greater muscle
soreness at the end of the tournament. During a junior rugby
league tournament where players performed in five matches over
a five-day period, a progressive decrease in wellbeing and
neuromuscular function was observed, which was negatively
associated with several performance variables including relative
distance, high-speed running and number of repeated high-
It is important to note that rugby sevens and rugby league both involve contact, which will likely influence measures of fatigue and exercise-induced muscle damage (EIMD). Nonetheless, Hogarth et al. reported a progressive decrease in wellbeing, while changes in jump height were unclear during a tag rugby competition that required male players to compete in three matches interspersed with 90-minute recovery. The authors also reported that increased neuromuscular and perceptual fatigue over consecutive matches were associated with reductions in match running performance.

Further work is required to elucidate changes in wellbeing and neuromuscular function over the course of a Touch tournament, as well as the influence of any changes on match running performance.

Current evidence on fatigue and EIMD from intermittent team sports is largely limited to single-sex groups. It is likely that reductions in performance capability from intermittent activity are specific to the demands of the task, the muscle activity and the physical characteristics of the individual, including sex. For example, Hunter reported that total muscle mass, proportional area of muscle fibres, contractile properties, mechanical compression and initial strength influences the magnitude of impairment during fatiguing exercises, which offers a possible explanation for the different fatigability in males and females.
However, sex differences in muscle force generating capability after damaging exercise remain unclear, with either no difference between sexes or greater losses for females compared to males. While differences in muscle fatigability between males and females has been studied during isolated tasks that involve isometric or dynamic muscle contractions, and repeated sprint exercise, changes in muscle function of intermittent team sports athletes involved in repeated activities over several days is unknown. Understanding the fatigue and EIMD characteristics of male and female Touch players within the sporting environment, rather than laboratory, is important for informing coaches’, tactical decisions and targeting pertinent recovery strategies.

The primary aim of this study was to examine the differences in match characteristics, neuromuscular function and perceived wellbeing between elite male and female Touch players during a four-day international tournament. A secondary aim was to explore the association between neuromuscular function and perceived wellbeing with measures of match workload.

Methods

Participants and design

With institutional ethics approval, 21 male (age = 26.3 ± 5.4 y, mass = 75.8 ± 8.0 kg, stature = 176.9 ± 5.7 cm) and 20 female (age = 26.4 ± 5.6 y, mass = 60.1 ± 6.2 kg, stature = 163.3 ± 5.3 cm)
international Touch players from same national team volunteered to participate in the study. All players had been prepared for the tournament over an 18-week period including formalised training, testing and a skills programme delivered by the nation's high-performance team. Players were monitored during a four-day international tournament comprising two or three matches per day starting between 08:30 and 10:00 on each morning, and with between 160 and 178 minutes between matches.

One week before the tournament, all players were habituated to the measurements of countermovement jump (CMJ), wellbeing, the global positioning system (GPS), heart rate monitor and rating of perceived exertion scale (sRPE). On each day of the tournament, players arrived at the venue between 07:30 and 09:00, at which point they completed two CMJs and a wellbeing questionnaire before completing matches as dictated by the schedule.

Procedures

Perceived wellbeing

Away from team mates and coaches, players provided ratings of perceived fatigue, mood, muscle soreness, sleep quality and stress using a 1- to 5-point Likert scale. Higher values were indicative of a positive response to the question, with lower values representing a negative outcome (e.g. 1 = “very sore” to
Participants completed two CMJs with hands placed on hips in an upright position before flexing at the knee to a self-selected depth and extending into the jump for maximal height, keeping their legs straight throughout. A 60 s passive recovery was permitted between jumps. Jump height (CV = 8.3%), peak force (PF; CV = 5.4%) and peak power (PPO; CV = 4.7%) were recorded using a uni-axial calibrated force platform (HUR Labs, FP4, Tampere, Finland) sampling at 1200 Hz and analysed using custom software (HUR Labs Force Platform Software Suite). Jump height (cm) was automatically calculated from flight time whilst peak power output (W) was calculated using in-built equations.

Players wore the same 10 Hz microtechnology device (Optimeye S5, Catapult Innovations, Melbourne, Australia) for all matches, fitted into a custom-made vest positioned between the participant’s scapulae. All devices were activated for the warm up (40 minutes before the ‘tap-off’) to enable acquisition of satellite signals. Data were truncated manually by the lead researcher based on the velocity trace to ensure only time when players were on the field was used for analysis (Sprint, Version 5.1, Catapult Sports, VIC, Australia). Measures of playing time,
absolute and relative total-, low- (<14 km·h\(^{-1}\)) and high-intensity distance (>14 km·h\(^{-1}\)), and time spent above high metabolic power (HMP; >20 W·kg\(^{-1}\)) were determined.

Players also wore a heart rate monitor which transmitted to the GPS device continuously during all matches with mean (HR\(_{\text{mean}}\)) heart rate calculated. Finally, 20 minutes after each match, participants provided a rating of perceived exertion using a 10-point scale, which was subsequently multiplied by playing duration (sRPE-TL).\(^{18}\)

Statistical analysis

Within-sex changes were analysed using a post-only crossover spreadsheet.\(^{19}\) Between-sex differences in the change in wellbeing and neuromuscular function were assessed using a pre-post parallel-groups spreadsheet\(^{20}\) with day 1 scores used as a covariate to control for baseline imbalances between groups. Data were analysed using effect sizes and 95% confidence limits (ES ± 95% CL), with threshold values of 0.0-0.2, trivial; 0.2-0.6, small; 0.6-1.2, moderate; 1.2-2.0, large; >2.0, very large used. To supplement these effect sizes and 95% CL, inferences on the magnitude of difference/change included: 25-75% possibly, 75-95% likely, 95-99% very likely and > 99.5 most likely.\(^{21}\) Effects with confidence limits that crossed a small positive or negative change were classified as unclear. To ascertain the association
between wellbeing and neuromuscular function with measures of workload, linear mixed models were constructed for each dependent variable (workload measure), with player included as a random factor, wellbeing and neuromuscular function measures included as fixed factors and day to account for the repeated measures (Supplement 1). To do this, scores from each morning were paired with the subsequent workload with all fixed factors entered into the model. Measures of neuromuscular function were grand-mean centered. The \(t \) statistic from all models was converted to an effect size correlation \((\eta^2)^{22} \) with 95% CL. The size of the effect was interpreted as: <0.1, trivial; 0.1-0.3, small; 0.3-0.5, moderate, 0.5-0.7, large; 0.7-0.9, very large; 0.9-0.99, almost perfect; 1, perfect. The likelihood of the effect was established using magnitude-based decisions with the following applied: <1% (almost certainly not), 1% to 5% (very unlikely), 5% to 25% (unlikely), 25% to 75% (possibly), 75% to 97.5% (likely), 97.5% to 99% (very likely), and >99% (almost certainly).\(^{21}\)

Results

Playing time

No clear mean difference was observed for mean playing time on day 2 (0.12 ± 0.68) whilst mean playing time was likely (0.39 ± 0.29) and possibly (0.24 ± 0.19) higher on day 3 and 4, respectively, compared to day 1. No clear mean difference was
observed in playing time for days 2 (-0.42 ± 0.65), 3 (-0.15 ± 0.59) and 4 (0.07 ± 0.69) compared to day 1 for males.

Match loads

Changes in the mean relative distance and relative low-intensity distance covered by females were *unclear* on day 2 (-0.10 ± 0.53; -0.01 ± 0.74) and day 4 (-0.09 ± 0.42; 0.05 ± 0.64), and *likely* lower on day 3 (-0.41 ± 0.35; -0.37 ± 0.50) when compared to day 1. Mean relative high-intensity distance was *possibly* and *likely* lower on days 2 (-0.28 ± 0.40) and 3 (-0.43 ± 0.29), respectively, but *unclear* on day 4 (-0.17 ± 0.40) when compared to day 1. For males, mean relative distance was *very likely* higher on day 2 (0.55 ± 0.41), *possibly* higher on day 3 (0.23 ± 0.48) and *likely* higher on day 4 (0.46 ± 0.44) when compared to day 1, whereas mean low-intensity distance was *very likely* higher on day 2 (0.63 ± 0.45) and *unclear* on day 3 (-0.01 ± 0.51) and 4 (0.12 ± 0.38). Changes in mean relative high-intensity distance were *unclear* for day 2 (-0.83 ± 0.1.40) and 4 (0.08 ± 0.94), but *likely* lower on day 3 (-0.71 ± 0.81) when compared to day 1. No clear changes were observed in mean time spent above HMP for females across day 2 (-0.03 ± 0.82), 3 (-0.08 ± 0.41) and 4 (0.31 ± 0.59). For males, the changes in HMP were *unclear* on day 2 (0.18 ± 0.69), *likely* higher on day 3 (0.51 ± 0.40) and *most likely* higher on day 4 (0.99 ± 0.44) compared to day 1 (Table 1).

HR_{mean} for the females was *likely* lower on day 2 (-0.47 ± 0.48)
and 4 (-0.36 ± 0.42), and very likely lower on day 3 (-0.66 ± 0.39) compared to day 1. For males, HR_{mean} was possibly higher on day 2 (0.17 ± 0.33) and most likely and likely lower on days 3 (-0.70 ± 0.34) and 4 (-0.74 ± 0.70), respectively. No clear within-sex change in mean sRPE-TL were observed for males for days 1 (0.16 ± 0.75), 2 (0.24 ± 0.65) and 3 (0.43 ± 0.80), and females for days 2 (-0.04 ± 0.74) and 3 (-0.06 ± 0.32); a likely higher sRPE-TL was observed on day 4 (0.41 ± 0.49).

**** INSERT TABLE 1 ABOUT HERE ****

Perceptual and Neuromuscular Fatigue Responses

Within-sex changes in wellbeing are presented in Figure 1. No clear between-sex differences in the magnitude of change were observed for sleep (day 1-4; -0.39 to 0.11), fatigue, stress, soreness (day 2; 0.08 to 0.31), and mood (day 4; 0.11 ± 0.50). The reduction observed for fatigue, soreness and overall wellbeing were greater for females on days 3 (0.39 ± 0.57, possibly; 0.62 ± 0.71; likely; and 0.46 ± 0.55; likely, respectively) and 4 (0.78 ± 0.72, likely; 0.49 ± 0.66, likely; 0.61 ± 0.64). Perceptions of stress were also likely higher for females on days 3 (0.46 ± 0.50) and 4 (0.68 ± 0.61), whilst mood was likely lower in males on day 2 (-0.60 ± 0.70) and females for day 3 (0.71 ± 0.71).

**** INSERT FIGURE 1 ABOUT HERE ****
Within-sex changes in CMJ height, relative PPO and relative PF are presented in Figure 2. There was no between-sex difference in the change in CMJ height for day 2 (0.08 ± 0.37), but the decrement in CMJ height was likely higher for females on days 3 (0.53 ± 0.57) and 4 (0.66 ± 0.65). A likely (0.37 ± 0.45), very likely (0.54 ± 0.40) and possibly (0.21 ± 0.41) greater decrease in relative PPO across days 2, 3 and 4, respectively, for females compared to males was observed. A likely trivial difference was observed in in relative PF between sexes on day 2 (0.09 ± 0.25) but was unclear on day 3 (-0.04 ± 0.25) and 4 (0.02 ± 0.28).

**** INSERT FIGURE 2 ABOUT HERE ****

Association between well-being and neuromuscular function with match loads.

The association between total wellbeing score and measures of neuromuscular function with match loads across the tournament are presented in Figure 3. Our results indicated that wellbeing was negatively associated (likely) with high-intensity distance ($\eta^2 = 0.15$) and time spent at HMP ($\eta^2 = 0.21$), whilst PF was likely to most likely positively associated with relative ($\eta^2 = 0.39$), low and high-intensity ($\eta^2 = 0.22$ and 0.30) distance, total high intensity distance ($\eta^2 = 0.31$) and time at HMP ($\eta^2 = 0.17$). CMJ height was positively (likely to very likely) associated with high intensity distance ($\eta^2 = 0.24$), relative high-intensity
distance ($\eta^2 = 0.16$) and HMP ($\eta^2 = 0.18$), whilst association between CMJ PPO and match loads were largely unclear.

**** INSERT FIGURE 3 ABOUT HERE ****

Discussion

For the first time, we describe the wellbeing, neuromuscular responses and match loads over a 4-day international Touch tournament. Our results indicated that across a 4-day tournament, total wellbeing and neuromuscular function decreased, with greater decrements in fatigue, soreness, jump height and relative PPO in female Touch players. The internal, external and perceptual responses to competition fluctuated across the tournament for both males and females, with some measures of load lowest on day 3. Observed associations between wellbeing, CMJ height and CMJ PF with match activity supports the notion that impaired muscle function does, to some extent, influence running loads in Touch players. Taken together, these data suggest that across an international competition, elite Touch players experience neuromuscular fatigue and a reduction in wellbeing, particularly in females, which is associated with altered match running performance.

Mean playing time for males and females was similar to that observed in international female players by Marsh et al., but higher than that reported for male players by Beaven et al. In agreement with Marsh et al., females in this study reported a
likely lower relative total, lower-intensity and high-intensity distance on day 3, which might be influenced by perceptions of fatigue and soreness; albeit, associations were trivial. The consistently higher sRPE-TL reported by females is in agreement with Kellmann et al.’s observation that females reported a higher perceived load than males for a given external load; this might be explained by females’ greater willingness to report how they perceived the load.23 Contextual factors such as opposition quality7 as well as differences in training status. Males also reported the lowest relative high-intensity distances on day 3, yet were able to attain the highest relative total and high-intensity distance, time at HMP and sRPE-TL on day 4 reflecting the greater opposition quality7 and match importance (i.e. final). Interestingly, there was an overall reduction in HR\textsubscript{mean} in both males and females across the tournament, agreeing with the findings of Hogarth et al.,24 who observed similar reductions in HR during five successive tag rugby matches. These observations possibly reflect players’ changes in pacing strategy during a match, whereby they adopt a greater number of self-selected interchanges and adjust their running activity as the tournament progresses to accommodate the accumulated fatigue and muscle damage, whilst ensuring that they are able to meet the demands of the match (e.g. complete sufficient high-intensity running). Indeed, the observation that high-intensity running declined on day 3 before increasing on
day 4, often described as the ‘end-spurt phenomenon’, provides further evidence that Touch players adopt a pacing strategy during tournaments.25 Further work is required to confirm this proposition as well as other possible mechanisms, such as hyper-activation of the parasympathetic nervous system in response to non-functional overreaching.26

Changes in perceived wellbeing during the tournament were consistent with previous studies of intensified competition periods.7,9 We observed a small reduction in total wellbeing across days 2 to 4. However, much of the change in total wellbeing was accounted for by the small to very large changes in perceived fatigue and muscle soreness. These findings are likely caused by the high-intensity running and time above high metabolic power as well as the need to repeat these actions during 5-6 matches over the first two days of competition.27

Between-sex analysis revealed no clear differences on day 2, though females did appear to report greater reductions in fatigue, soreness and total wellbeing compared to males on day 3 and 4. When compared to males, female basketball players reported lower values for physical recovery, sleep quality and self-efficacy using the recovery/stress questionnaire for sport.28 Further, female rowers reported higher scores for stress-related RESTQ-sport and lower values for recovery when compared to elite junior male rowers despite no significant differences in
Therefore, the consistently higher sRPE-TL reported by females in our study might explain the impaired perceived recovery compared to males,23,28 despite a lower mean relative distance, high-intensity distance and time spent above HMP. Associations between wellbeing and match-related running performance revealed a small-to-moderate positive relationship for playing time, HR_{mean}, and sRPE-TL in females whilst males only demonstrated a small positive association with playing time. Small-to-moderate negative associations were observed between wellbeing and relative total and high-intensity distance and time above HMP in males; albeit match-to-match variation and opposition quality during the tournament as well as the influence of the ‘pod system’ used in Touch, whereby two or three players of the same position self-interchange during a match, requires consideration. Taken together, these data indicate that player sex should to be taken into account when managing perceived wellbeing during an international Touch tournament, and effective strategies to minimise decrements in running performance require consideration.

Small-to-moderate reductions in CMJ height and relative PPO were observed over days 2 to 4 in both males and females when compared to day 1. These findings are consistent with previous research that has observed decrements in neuromuscular function across intensified periods of team sport activity4,29
Changes in PF were *likely trivial* and reaffirm previous findings that measures of muscle force might lack sensitivity. This observation is likely explained by the preferential damage to type II muscle fibres resulting from the high-intensity intermittent, multidirectional running demands and accumulated load. Such changes will alter the force-velocity relationship and could compromise a player’s ability to execute velocity-dominant actions. Between-sex differences were observed for the change in CMJ flight time and power on days 3 and 4 with *likely trivial* differences observed for PF. While an understanding of between sex-differences in muscle function after muscle damaging exercise remain equivocal, we propose the greater loss in jump height and relative PPO for females in this study might be explained by higher perceived soreness and fatigue and greater perceived loads compared to males. A higher perceived soreness is likely to reduce voluntary activation, which has been reported after damaging exercise and might contribute to a lower jump performance in females as the tournament progressed. In addition, the higher metabolic load for females, as evidenced by the higher heart rate, coupled with the potential for poor energy intake previously reported in female Touch players during a tournament might have resulted in a greater glycogen depletion from successive matches that manifest as a greater reduction in muscle function. These suggestions are despite the trivial-to-moderate relationships
between measures of neuromuscular function (i.e. CMJ height and PPO) and responses to match-play. The reductions in jump height and relative PPO over the course of the tournament suggests careful management of players is needed by practitioners and coaches using appropriate tactical, recovery and nutritional strategies, with particular attention given to female players.

Whilst this study is the first to present changes in wellbeing, neuromuscular function and match load across an international Touch tournament, there are several limitations that warrant discussion. The findings represent three individual (men’s, women’s and mixed open) teams from a single nation from which the data were pooled and reported by sex. Our data do not therefore represent those of specific teams. It is also important to consider the tactical and technical aspects of the game given the influence factors such as pod number (i.e. 2 or 3 players rotating as interchanges) might have on wellbeing, neuromuscular and match responses. However, such information is difficult to access and account for within the analysis. Within this study we are unable to comment on the mechanistic origins of the fatigue and EIMD (e.g. voluntary activation, biochemical, hormonal, inflammatory) due to the applied nature of this study. Finally, several possible and unclear effects were observed in our study and therefore replication studies are warranted.
Practical applications

During international Touch competition, coaches and sport scientists should monitor a player’s wellbeing and neuromuscular function and manage responses accordingly, particularly those working with female Touch players. Furthermore, practitioners and coaches should strive to manage workload appropriately through rest or implementing tactical changes such as changing from a ‘2-pod’ (i.e. work to rest ratio of 1:1) to ‘3-pod’ (work to rest ratio of 1:2) system as well as considering effective recovery and nutritional strategies between matches and days. Finally, administrators organising Touch competitions, might consider organising fixtures in a way that provides players with sufficient recovery on day 3 where players appear most fatigued and likely to be susceptible to fatigue-related injuries.

Conclusions

We observed reductions in wellbeing, CMJ height and PPO in male and female Touch players during an international Touch tournament, with greater reductions observed in females during the latter stages of the tournament compared to males. Changes in match-play loads varied across each of the four days with a reduction on day 3 but higher running speeds on the final day.
While 9-10 Touch matches over a 4-day period has detrimental effects on wellbeing and neuromuscular function, players seemingly adopt a match pacing strategy as the tournament progresses that enables the highest exercise intensities on the final day. These data can be used by practitioners and coaches to develop appropriate support strategies and tactical approaches to ensure Touch players are prepared for the rigours of intensified tournament competition.

Acknowledgment

The authors would like to thank the Sam Griffith for his assistance with data collection and the continued support from
players and coaches at England Touch Association. We would also like to thank Catapult Sports for supporting this research through the provision of GPS units.

References

Table 1. Mean external, internal and perceptual loads of 2-3 matches presented per day across an international 4-day touch rugby tournament.

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th>Males</th>
<th>Females</th>
<th>Males</th>
<th>Females</th>
<th>Males</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Playing time (min)</td>
<td></td>
<td>20.6 ± 9.2</td>
<td>21.9 ± 9.7</td>
<td>22.3 ± 7.0</td>
<td>21.9 ± 7.3</td>
<td>19.5 ± 8.1</td>
<td>18.5 ± 6.1</td>
<td>19.3 ± 6.0</td>
</tr>
<tr>
<td>Total distance (m)</td>
<td></td>
<td>2393 ± 782</td>
<td>2606 ± 1001</td>
<td>2507 ± 717</td>
<td>2573 ± 707</td>
<td>2350 ± 912</td>
<td>2436 ± 526</td>
<td>2402 ± 551</td>
</tr>
<tr>
<td>Total distance (m·min⁻¹)</td>
<td></td>
<td>122.7 ± 21.2</td>
<td>121.1 ± 16.6</td>
<td>114.7 ± 11.0</td>
<td>121.0 ± 13.6</td>
<td>123.3 ± 17.8</td>
<td>134.8 ± 14.0</td>
<td>128.1 ± 15.7</td>
</tr>
<tr>
<td>Low-intensity distance (m)</td>
<td></td>
<td>2011 ± 811</td>
<td>2207 ± 1018</td>
<td>2147 ± 776</td>
<td>2178 ± 721</td>
<td>1981 ± 1101</td>
<td>1981 ± 784</td>
<td>1804 ± 489</td>
</tr>
<tr>
<td>Low-intensity distance (m·min⁻¹)</td>
<td></td>
<td>100.2 ± 11.1</td>
<td>100.7 ± 13.8</td>
<td>96.2 ± 7.9</td>
<td>100.7 ± 7.9</td>
<td>97.3 ± 13.9</td>
<td>105.7 ± 8.2</td>
<td>95.7 ± 13.8</td>
</tr>
<tr>
<td>High-intensity distance (m)</td>
<td></td>
<td>383 ± 128</td>
<td>371 ± 123</td>
<td>371 ± 122</td>
<td>385 ± 141</td>
<td>477 ± 150</td>
<td>526 ± 169</td>
<td>568 ± 133</td>
</tr>
<tr>
<td>High-intensity distance (m·min⁻¹)</td>
<td></td>
<td>22.9 ± 13.2</td>
<td>19.1 ± 9.1</td>
<td>17.9 ± 7.7</td>
<td>21.0 ± 11.5</td>
<td>32.5 ± 6.4</td>
<td>31.2 ± 9.7</td>
<td>30.6 ± 8.0</td>
</tr>
<tr>
<td>Time spent above HMP (min:s)</td>
<td></td>
<td>1:50 ± 0:24</td>
<td>1:49 ± 0:27</td>
<td>1:48 ± 0:28</td>
<td>2:00 ± 0:30</td>
<td>2:00 ± 0:28</td>
<td>2:10 ± 0:33</td>
<td>2:12 ± 0:24</td>
</tr>
<tr>
<td>Mean HR (b·min⁻¹)</td>
<td></td>
<td>144 ± 14</td>
<td>137 ± 20</td>
<td>135 ± 21</td>
<td>137 ± 14</td>
<td>126 ± 13</td>
<td>130 ± 15</td>
<td>117 ± 16</td>
</tr>
<tr>
<td>sRPE-TL (AU)</td>
<td></td>
<td>108 ± 59</td>
<td>105 ± 67</td>
<td>101 ± 58</td>
<td>129 ± 59</td>
<td>73 ± 38</td>
<td>96 ± 38</td>
<td>80 ± 45</td>
</tr>
</tbody>
</table>

Data presented as mean ± SD. ¹ = trivial, ² = small, ³ = moderate within-sex effect size compared to day 1. * possibly, ** likely, *** very likely, **** most likely. HMP = high metabolic power (> 20 W·kg⁻¹). HR = heart rate. sRPE-TL = perceived load.
Figure 1. Mean ± SD for perceived fatigue, sleep, muscle soreness, stress, mood and total score for males (black solid line) and females (grey dashed line) across the tournament. Descriptors and effect sizes for male (black text) and females (grey text) are compared to day 1.

Figure 2. Mean ± SD for jump height (top), peak power (middle) and PF (bottom) for males (black solid line) and females (grey dashed line) across the tournament. Descriptors and effect sizes for male (black text) and females (grey text) are compared to day 1.

Figure 3. Effect size correlations (95% confidence intervals, CI) between well-being (circle), CMJ peak power (triangles), CMJ height (diamond) and CMJ PF (squares) with measures of external, internal and perceptual load across the four-day tournament. * Possibly, ** likely, *** very likely, **** most likely.
Figure 1
Figure 2

Table: Performance Metrics Across Gender and Days

<table>
<thead>
<tr>
<th></th>
<th>Female Day 1</th>
<th>Female Day 2</th>
<th>Female Day 3</th>
<th>Female Day 4</th>
<th>Male Day 1</th>
<th>Male Day 2</th>
<th>Male Day 3</th>
<th>Male Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countermovement Jump Height (cm)</td>
<td>Most likely: -0.51 ± 0.13</td>
<td>Likely: -0.53 ± 0.25</td>
<td>Likely: -0.59 ± 0.25</td>
<td>Likely: -0.94 ± 0.27</td>
<td>Most likely: -0.61 ± 0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Power Output (W kg⁻¹)</td>
<td>Likely: -0.36 ± 0.18</td>
<td>Likely: -0.37 ± 0.23</td>
<td>Likely: -0.25 ± 0.20</td>
<td>Likely: -0.38 ± 0.20</td>
<td>Likely: -0.47 ± 0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Force (N kg⁻¹)</td>
<td>Likely trivial: 0.09 ± 0.12</td>
<td>Likely trivial: -0.10 ± 0.19</td>
<td>Likely trivial: 0.04 ± 0.15</td>
<td>Likely trivial: 0.09 ± 0.13</td>
<td>Likely trivial: 0.15 ± 0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3