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Abstract

The material here is motivated by the discussion of solutions of linear homogeneous and autonomous
differential equations with deviating arguments. If a, b, c and {τ̌`} are real and γ\ is real-valued and
continuous, an example with these parameters is

u′(t) =
{
au(t) + bu(t+ τ̌1) + cu(t+ τ̌2)

}
+

∫ τ̌4

τ̌3

γ\(s)u(t+ s)ds. (?)

A wide class of equations (?), or of similar type, can be written in the “canonical” form

u′(t) =

∫ τmax

τmin

u(t+ s)dσ(s) (t ∈ R), for a suitable choice of τmin, τmax (??)

where σ is of bounded variation and the integral is a Riemann-Stieltjes integral. For equations
written in the form (??), there is a corresponding characteristic function

χ(ζ)) := ζ −
∫ τmax

τmin

exp(ζs)dσ(s) (ζ ∈ C), (? ? ?)

whose zeros (if one considers appropriate subsets of equations (??) – the literature provides additional
information on the subsets to which we refer) play a rôle in the study of oscillatory or non-oscillatory
solutions, or of bounded or unbounded solutions. We show that the related discussion of the zeros of
χ is facilitated by observing and exploiting some simple and fundamental properties of characteristic
functions.

Keywords: Differential equations with deviating arguments, equations of mixed-type,
characteristic functions, discretizations, oscillatory and non-oscillatory and bounded or unbounded
functions.

1. Introduction and statement on authorship

This review paper was first motivated by discussions between the authors (CTHB and NJF)
when the papers [4] and [5] were in preparation. The discussions focused on retarded and mixed-
type functional differential equations and exposed the very complex dynamical behaviours found in
these problems and the fact that insights from retarded differential equations provide an inadequate
basis for understanding the dynamics of equations of these different types. The discussions also
concerned the related papers [3, 11, 12]. As a consequence of these discussions, one author CTHB
began to prepare a review paper on the subject.

Sadly, CTHB passed away in 2017, leaving an unfinished manuscript, which his co-author NJF
has completed, on the invitation of CTHB’s family, to enable its publication.
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2. Prologue

2.1. Case study: an equation studied by E.C. Titchmarsh

We open with a simple (symmetric) example of the type of equation (*) to be considered.

Example 2.1. In the paper [13] read to the London Mathematical Society in February 1939, Titch-
marsh illustrated how Fourier integrals can be modified to determine, without assuming exponential

boundedness of y, solutions of the equation y′(t) =
{y(t+ h)− y(t− h)}

2h
with h > 0. One can

normalize the problem and chose h = 1, so we address

u′(t) = 1
2{u(t+ 1)− u(t− 1)} (t ∈ R) (2.1)

where u(t) = y(t/h) (so we reformulate the results in [13]). From Titchmarsh [13, equation (5)], we
conclude that every complex-valued solution u may be expressed for suitable scalars A,B,C, {C`} in
the form

u(t) = A+Bt+ Ct2 +
∑
ξ` 6=0

C` exp(ζ`t) (2.2)

where the sum runs over non-zero values ζ` satisfying

χ(ζ`) = 0, with χ(ζ) := ζ − sinh(ζ) (2.3)

and sinh(ζ) ≡ 1
2 [exp(ζ) − exp(−ζ)] for ζ ∈ C. The real and imaginary parts of (2.2) provide real-

valued solutions. The value ζ0 = 0 is a zero of χ of multiplicity three since χ(0) = χ′(0) = χ′′(0) = 0
and χ′′′(0) 6= 0. In (2.2), the term A+Bt+Ct2 is, in fact, (A+Bt+Ct2) exp(ζ0t). The non-zero
characteristic values {ζ`} are simple zeros and collectively give rise to the sum

∑
ξ` 6=0 C` exp(ξ`t).

A little analysis reveals that any non-zero characteristic value {ζ`} has a non-zero imaginary part
(and its complex conjugate is also a characteristic value). Equation (2.2) is an example of a solution
expansion

u(t) =

∞∑
`=0

P`(t) exp(ξ`t) for t ≥ 0 (2.4)

(cf. (7.13)). The reader will observe that Titchmarsh proves that all complex solutions have the
representation (2.2). The discussion of Titchmarsh served to illustrate a technique based on modified
Fourier transforms that avoids usual assumptions of transform theory.

3. Preliminaries

3.1. Some basic material

Let F denote a linear space of real-valued functions of a real variable t ∈ R. Suppose that
elements of F are continuous on R (the continuity requirement may be strengthened).

Definition 3.1. We denote by A the set of operators L on F that are linear and autonomous:

L{a0u0 + a1u1}(t) = a0Lu0(t) + a1Lu1(t), (∀ a0, a1, t ∈ R) when u0, u1 ∈ F, (3.1a)

Lu(t+ s) = Lu(t) (∀ s, t ∈ R) when u ∈ F. (3.1b)

Lu(t) is synonymous1 with L{u}(t).

Next we recall a definition from basic analysis.

1In applications, t need not represent time. By an abuse of notation we sometime write “the function u(t)” for “
the function u with argument t”.
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Definition 3.2 (Total variation, bounded variation). For a function σ ∈ ([−τ\, τ \]→ R), the

total variation V τ\

−τ\(σ) is sup
{r`}

N−1∑
0

|σ(ri+1)−σ(ri)| where the supremum is taken over all partitions

{r`} of [−τ\, τ \], each with −τ\ = r0 < r1 < · · · < rN = τ \ for some integer N . Functions σ of

bounded variation are those functions with V τ\

−τ\(σ) <∞.

We suppose N1 and N2 are finite sets of integers, the real values {τj}j∈N1 are enumerated
algebraically, γ1,j ∈ R for j ∈ N1, and the real-valued function γ2,k is continuous on [τ̂k, τ̂

k] for
k ∈ N2.

Definition 3.3. We write L ∈ A(3.2) if

Lu(t) =
∑
j∈N1

γ1,j u(t− τj) +
∑
k∈N2

∫ τ̂k

τ̂k

u(t− s)γ2,k(s)d(s) (t ∈ R). (3.2)

If there exists a function σ of bounded variation on an interval [τmin, τmax] and

Lu(t) =

∫ τmax

τmin

u(t+ s)dσ(s) (t ∈ R), (3.3)

then we write dσ = dσ(L) and L ∈ A(3.3).
To extend L to a space of complex-valued functions w ∈ (R → C), we write (when w0, w1 ∈ F

where w0(t) = <w(t), w1(t) = =w(t)),

Lw(t) := L(<{w(t)}) + iL(={w(t)}) (i =
√
−1) for t ∈ R. (3.4)

Equations with τmin = −τmax often occur in the literature (cf. Example 2.1).

Remark 3.1. If we select s∗ ∈ [τmin, τmax] then, given dσ we can rewrite (3.3) in the form

Lu(t) = a∗u(t+ s∗) +

∫ τmax

τmin

u(t+ s)dσ∗(s) (t ∈ R), (3.5)

where σ∗ is continuous at s∗ (a∗ ∈ R may be zero).

3.2. Types of equation

Lemma 3.1. A(3.2) = A(3.3) in the sense that every equation (3.2) can be expressed in the form
(3.3) for some σ of bounded variation that is differentiable almost everywhere (having a finite set of
jump discontinuities), and vice versa.

We indicate a proof. Any bounded linear autonomous operator L on F generates a corresponding
linear functional Λ on setting Λu = L {u}(0) and, conversely, every bounded linear functional
Λ generates a bounded linear autonomous operator L . The Riesz representation theorem for Λ
provides a corresponding representation for L and this representation theorem, when applied to
L, leads us to formulate the preceding result. Its significance lies in the fact that our theoretical
discussion can be focussed, should we wish, on the form (3.3). Given an example of the form (3.2),
we can determine a corresponding σ.

Remark 3.2. With an obvious notation, we can define {L1,j}j∈N1
and {L2,k}k∈N2

corresponding
to (3.2) so that (3.2) reads Lu(t) =

∑
j∈N1

{L1,ju(t)}+
∑
k∈N2

{L2,ku(t)} and

L =
∑
j∈N1

L1,j +
∑
k∈N2

L2,k. (3.6)

If we take [τmin, τmax] to be the minimal connected region that contains {τj} and the intervals [τ̂k, τ̂
k]

and we identify dσ1,j ≡ dσ(L1,j) and dσ2,k ≡ dσ(L2,j) so that

L1,ju(t) =

∫ τmax

τmin

u(t+ s)dσ1,j(s) and L2,ku(t) =

∫ τmax

τmin

u(t+ s)dσ2,k(s) (3.7)

then (3.6) gives dσ(L) =
∑
j{dσ(L1,j)}+

∑
k{dσ(L2,k)}.
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Denote by F′ the subset of F consisting of functions differentiable on R, and write

Du(t) = u′(t) (t ∈ R), for u ∈ F′. (3.8)

This definition extends to complex-valued diferentiable functions; compare (3.4). The restriction of
L to F′ is also denoted L. and we define a linear operator M on F′ with

M := D − L. (3.9)

The “differential equations” of interest, u′(t) = Lu(t), can be represented in the formM{u} = 0, or
Mu(t) = 0 for t ∈ R. Thus, (??) can be written Mu(t) = 0 where M = D − L and L ∈ A(3.3). We
suppose τmin < τmax but do not assume τmin × τmax ≤ 0.

Definition 3.4 (Retarded, advanced, and mixed-type problems). Various subclasses of prob-
lem appear in the literature:

1. (Class O) ordinary differential equations, where s∗ = 0 and dσ∗(s) ≡ 0 in (3.5);

2. (Class D:) delayed or retarded problems, where [τmin, τmax] ∩ (0,∞) is empty;

3. (Class A:) advanced problems, where [τmin, τmax] ∩ (−∞, 0) is empty;

4. (Class M:) problems of mixed type, where neither (1) nor (2) apply.

Class D corresponds to dσ(t) = 0 for t > 0, Class A corresponds to dσ(t) = 0 for t < 0.

Class D has attracted most discussion in the literature. We shall discuss further classes of equation
later.

4. Characteristic functions, values, and solutions

The characteristic functions that we associate with (?) and (??) in the abstract are

ζ − {a+ b exp(τ̌1ζ) + c exp(τ̌2ζ) +

∫ τ̌4

τ̌3

γ\(s) exp(sζ)ds} (ζ ∈ C); (4.1)

ζ −
∫ τmax

τmin

exp(ζs)dσ(s). (4.2)

We make the concept of characteristic function precise. L may be any linear autonomous operator
on F but suppose L ∈ A(3.2) or L ∈ A(3.3). Define

χL(ζ) = exp(−ζt)Lexp(−ζt) for arbitrary t ∈ R. (4.3)

as the characteristic function of L. Similarly, for (3.9) (M defined on F′), define

χM(ζ) = exp(−ζt)Mexp(−ζt) (t ∈ R arbitrary) (4.4)

the characteristic function of M. Equivalently,

χM(ζ) := ζ − χL(ζ). (4.5)

Specifically, for L ∈ A(3.3), χM(ζ) reduces to (4.2). The function χM in (4.5) is analytic and its real-
or complex-valued zeros are called the characteristic values of M. The set of characteristic values
{ζ`} of M is countable, and will be denoted Σ(M). We have

ζ±` = ξ` ± iη`, ξ` =

∫ τmax

τmin

exp(ξ`s) cos(η`)dσ(s), η` =

∫ τmax

τmin

exp(ξ`s) sin(η`)dσ(s) (4.6)

and if ζ` ∈ Σ(M) then ζ` ∈ Σ(M) For real characteristic values we have

ξ` =

∫ τmax

τmin

exp(ξ`s)dσ(s) (ζ` = ξ` ∈ R). (4.7)
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Remark 4.1. Returning to (4.2), the defining equation ζ` =

∫ τmax

τmin

exp(ζ`s)dσ(s) frequently pro-

vides results on the possible size of the characteristic values given conditions on dσ. To illustrate,
consider real characteristic values in in (4.7) and suppose τmax > 0 and dσ(s) is of fixed sign (as-
sume it is nonnegative and not everywhere zero) on an interval [τmax −∆, τmax]. Then as ξ → ∞,

the behaviour of

∫ τmax

τmin

exp(ξs)dσ(s) is dominated by the behaviour of

∫ τmax

τmax−∆

exp(ξs)dσ(s) which

grows exponentially, and hence grows faster than ξ. Consequently, ξ < χL(ξ) for all large ξ ∈ R:
χM(ξ) cannot vanish for large ξ and the real characteristic values {ξ`} are bounded above.

The multiplicity of a characteristic value ζ` ∈ C will be denoted µ(ζ`) ∈ N = {1, 2, 3, · · · }:

χM(ζ) = χ′M(ζ) = · · · = χ
µ(ζ`)−1
M (ζ) = 0 and χ

µ(ζ`)
M (ζ) 6= 0. (4.8)

Specifically for (4.2), the values of derivatives in (4.8) assume the form

χ′(ζ) = 1−
∫ τmax

τmin

s exp(ζs)dσ(s) (4.9a)

χk(ζ) = −
∫ τmax

τmin

sk exp(ζs)dσ(s) (k = 2, 3, · · · ). (4.9b)

If ζ` ∈ Σ(M), then ζ` ∈ Σ(M) where ζ` is the complex conjugate, and µ(ζ`) = µ(ζ`). We refer to a
function

vζ`(t) = Pζ`(t) exp(ζ`t) where Pζ`(t) :=

µζ`−1∑
r=0

α`,rt
r (4.10)

as a characteristic solution. Here, Pζ`(t) is an arbitrary polynomial in t of degree µζ` − 1. When
k ∈ {1, 2, · · · , µζ` − 1} and Pζ`(t) = tk we write vζ`(t) in (4.10) as vζ`(k; t).

Lemma 4.1. (a) For uζ(t) := exp(ζt) (ζ ∈ C), u′ζ(t)−Luζ(t) = 0 (i.e., Muζ(t) = 0) for all t ∈ R
if and only if χM(ζ) = 0 (i.e., ζ ∈ Σ(M)). (b) Given ζ` ∈ Σ(M), every characteristic solution vζ` in
(4.10) is a (possibly complex-valued) solution of Mu(t) = 0. (c) When ζ` ∈ Σ(M) has multiplicity
µζ` ≥ 1 and ξ` = <(ζ`), η` = =(ζ`), and {α`,r}, {α̂`,r} are arbitrary sets of real numbers, we define
the corresponding real-valued functions

vζ`(t) =

µζ`−1∑
r=0

α`,rt
r×exp(ξ`t) cos(η`t) +

µζ`−1∑
r=0

α̂`,rt
r×exp(ξ`t) sin(η`t), (4.11)

then Mvζ`(t) = 0.

Proof: In view of Lemma 3.1, it is sufficient to consider L ∈ A(3.3). Clearly, for ζ ∈ C,

M exp(ζt) ≡ {D − L} exp(ζt) = χM(ζ)×exp(ζt) (4.12)

and (a) follows. Now suppose that ζ` ∈ Σ(M) and µ(ζ`) ∈ N and take vζ`(1; t) = t exp(ζ`t). Then

Mvζ`(1; t) = t exp(ζ`t)× χM(ζ) + exp(ζ`t)× χ′M(ζ) = 0 (t ∈ R). (4.13)

Further, if µ(ζ`) ≥ 2, with k ∈ {2, 3, · · · , µ(ζ`)}, vζ`(k; t) = tk exp(ζ`t). For t ∈ R,

Mvζ`(k; t) = {kt(k−1) exp(ζ`t) + ζ`t
k exp(ζ`t)} −

∫ τmax

τmin

(t+ s)k exp{ζ`(t+ s)}dσ(s).

We know that (4.8) and (4.9) hold; for k ∈ {2, 3, · · · , µ(ζ`)−1} (but not for k = µ(ζ`))

∫ τmax

τmin

sk exp{ζ`s}dσ(s) =

0. By the binomial theorem, (t + s)k = tk + ktk−1s + · · · + sk, so for k ∈ {2, 3, · · · , µ(ζ`) − 1} we
find Mvζ`(k; t) =

tk exp(ζ`t)

(
ζ` −

∫ τmax

τmin

exp{ζ`s}dσ(s)

)
+ kt(k−1) exp(ζ`t)

(
1−

∫ τmax

τmin

{s exp{ζ`s}dσ(s)

)
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or (as a generalization of (4.13) above)

Mvζ`(k; t) = tk exp(ζ`t)× χM(ζ`) + kt(k−1) exp(ζ`t)× χ′M(ζ`), (4.14)

which vanishes for every t. By superposition, we establish that (4.10) is a solution and (b) follows.
Part (c) follows by considering the real and imaginary parts of (4.10). 2

Suppose {α`,r}, {α̂`,r} in (4.11) are such that

v(t) :=
∑

ζ`∈Σ(M)

{vζ`(t)} (4.15)

converges for all t ≥ 0. For convenience (see Lemma 4.2), we suppose sup |α`,r| ≤ Ω < ∞ and

sup |α̂`,r| ≤ Ω <∞. Proceeding formally M(
∑

ζ`∈Σ(M)

{vζ`(t)}) =
∑

ζ`∈Σ(M)

M{vζ`}(t). and very term

in the right-hand sum vanishes. However, without preciser assumptions there is no guarantee that
every function v(t) that satisfies Mv(t) = 0 can be written in the form (4.15).

Remark 4.2 (Term-by-term differentiation and integration). With arbitrary parameters in
(4.10) there is no guarantee that either series converges. As noted in [6] there are series of continuously-
differentiable functions, uniformly convergent on an interval, for which the series obtained by term-
by-term differentiation converges on the interval, but the sum of the original series is either not
differentiable on the whole interval in question, or it is differentiable but its derivative is not equal
to the sum of the series of derivatives.

Let T ≡ [Tmin, Tmax] ⊂ R and consider conditions2 for term-by-term differentiation of a series
S =

∑∞
`=1 w`(t). If the terms w`(t) are continuously differentiable on the interval T, if the infinite

series S converges at some point t0 of T and the series
∑∞
`=1 w

′
`(t) of derivatives of the terms

is uniformly convergent on T, then the series S is itself uniformly convergent on T, its sum is
continuously differentiable on T and S′(t) can be obtained by term-by-term differentiation: S′(t) =∑∞
`=1 w

′
`(t) for t ∈ T. The conditions above may be applied with w` = vζ` .

5. Solution properties

We summarize the position. A real-valued uniformly convergent series

∑
ζ`∈Σ(M)

{(
µζ`−1∑
r=0

a`,rt
r) exp(ζ`t)} (5.1)

of characteristic solutions vζ`(t) is a (possibly complex-valued) solution ofMu(t) = 0 for t ∈ T. The
real and imaginary parts of solutions of the form (5.1) are real-valued solutions, related to linear
combinations of solutions of the form (4.11). From Lemma 4.1 and with its notation, we have (by
superposition, and Remark 4.2) the following result.

Theorem 5.1. Every uniformly convergent series on T ⊂ R of the form

∞∑
`=1

µζ`−1∑
r=0

{α`,rtr×cos(η`t) + α̂`,rt
r×sin(η`t)} exp(ξ`t), (5.2a)

ξ` = <(ζ`), η` = =(ζ`), ζ` ∈ Σ(M), (5.2b)

(in particular, sums over a finite number of terms ` ∈ {1, 2, · · · , N}), satisfies Mu(t) = 0 with
M = D − L, and L ∈ A(3.3), when [t+ τmin, t+ τmax] ⊂ T ⊂ R.

2 See Uniformly-convergent series, Encyclopedia of Mathematics, [6]
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The expression in (5.2) contains arbitrary parameters {α`,r}, {α̂`,r}, and if a particular solution
is to be defined then suitable constrains (e.g., initial conditions, final conditions, or similar) would
have to be specified. To study this issue would take us into the area of problems that are well- or
ill-posed in the sense of Hadamard, an area into which there is no need for us to venture here.

In applications, various properties (e.g., periodicity, oscillation or non-oscillation, decay, bound-
edness or unboundedness) of solutions to Mu(t) = 0 are of interest. Lemma 4.1 provides insight
because it establishes certain forms of solution, but we have not established that all solutions of
Mu(t) = 0 have the form (5.2). It may be sufficient in our discussion to establish that all solutions
possesing a specific qualitative property can be written in the form (5.2).

By a periodic solution with period $ ∈ R we mean a solution that satisfies u(t) = u(t+$) for
t ∈ R, and such solutions provide examples of oscillatory functions: In normal parlance, these are
functions that vary repeatedly about a central value. For A 6= 0,

1−A exp(ξt) cos(ηt) (t ∈ R) (5.3)

oscillates about 1 with steady amplitude if ξ = 0 and with increasing or decreasing amplitude as
t → ∞, according as ξ > 0 or ξ < 0. A different definition of oscillation is often employed in the
discussion of solutions of differential equations and it has been carried across to equations of Class
D, A, or M (Definition 3.4.

Definition 5.1. Here, a non-null real-valued solution will be said to be ultimately oscillating if it
has an unbounded sequence of distinct real zeros.

The function (5.3) is not “ultimately oscillating” in the sense of Definition 5.1 unless η 6= 0 and
either ξ > 0 or ξ = 0 and A = 1.

5.1. A general perspective

Equation (?) in the abstract reads:

u′(t) =

∫ τ

−τ
u(t+ s)dσ(s) (t ∈ R) (5.4)

and is defined by a real-valued integrator σ, which is independent of v, and is of bounded variation.
The integral is a Riemann-Stieltjes integral. By a solution u of (5.4) we mean a real-valued function3

u that is differentiable and satisfies (5.4). Equation (2.1) can be expressed in the form (5.4) (with
normalized τ = 1), and the study of (2.1) will find persistent echoes in what follows. However, it is
not universally the case that all solutions of equations of the type (5.4) are expressible in the form
(2.4) (cf. (7.13)), and we shall impose conditions to overcome this difficulty.

The symmetry about t of the deviating arguments t±1 in (2.1) makes the example (2.1), and many
others in the literature, somewhat special. We wish to explore examples that lack this symmetry -
e.g., u′(t) = 1

2

{
u(t+ 3

2 )−u(t− 1
2 )
}

, t ∈ R. Equation (5.4) appears to display the symmetry referred
to here, but if the support of σ is [τ\, τ

\] with τ\ < τ \ then we can rewrite (5.4) in an explicitly
unsymmetric form

u′(t) =

∫ τ\

τ\

u(t+ s)dσ(s) (t ∈ R). (5.5)

Remark 5.1 (Equivalent versions of (5.4) and (5.5)). Equation (5.4) is a special case of (5.5)
(and vice-versa). We can replace [τ\, τ

\] by [−τ, τ ] assuming (as we do) that we permit dσ(s) to
vanish on subsets of [−τ, τ ]. For an equivalent form (5.4) of (5.5) we take

τ := max{τ\, τ \}, dσ(s) = 0 if s /∈ [−τ\, τ \]. (5.6)

3There is a natural extension to complex-valued functions which we refer to as solutions if their real and their
imaginary parts are both solutions.
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Definition 5.2 (Delayed, advanced, and mixed-type equations). Equation (5.5) and (5.4)
are ordinary differential equations if dσ(s) = 0 for s 6= 0. Equation (5.5) (and (5.4)) are, if
not ordinary differential equations, said to be

(i) of retarded or delayed type if τ \ = 0 (dσ(s) = 0 for s > 0 in (5.4)),

(ii) of advanced type if τ\ = 0 (dσ(s) = 0 for s < 0 in (5.4)), and

(iii) of mixed type if it is neither of retarded nor advanced type.

Where τ > 0, the equations u′(t) = au(t) + bu(t − τ) + cu(t + τ) illustrate the above types, either
with b and c = 0 or alternatively with (i) c = 0, or (ii) with b = 0, or (iii) bc 6= 0.

5.2. Solution properties considered in our discussion

Our properties or interest are boundedness and oscillation. A solution u is bounded for t ≥ 0
if supt≥0 |u(t)| < ∞. Our discussion of boundedness of all solutions for t ≥ 0 reduces, under
our assumptions, to an investigation of the existence or non-existence of zeros of the characteristic
function that have positive real part.

In Definition 7.1 we define oscillatory and non-oscillatory solutions precisely, and then use these
definitions to define non-oscillatory and oscillatory equations. Using Definition 7.3 and Definition
7.5), our discussion of oscillation reduces, under our assumptions, to an investigation of the existence
or non-existence of real zeros of χ.

As the zeros of χ lie in the complex plane, it has been conventional for investigations of the
characteristic values to use complex analysis, but we can obtain some insight very readily using real
analysis.

6. Linear homogeneous autonomous equations with deviating arguments

We next review types of functional differential equations that can be written in the form

Mu(t) = 0 where Mv(t) := v′(t)−
∫ τ

−τ
v(t+ s)dσ(s), (6.1)

for differentiable v ∈ ([−τ, τ ] → R). It is natural to seek appropriate “canonical equations” that
may be used as “paradigms” when assessing the qualitative behaviour of solutions. There seems to
be some lack of uniformity in the explicit forms of the equations chosen for study in the literature,
and we consider the refined version of (6.1),

M\u(t) = 0 where M\v(t) := v′(t)−
∫ τ\

−τ\
v(t+ s)dσ(s) (t ∈ R). (6.2)

We write
M\v(t) := v′(t)− L\v(t) ≡ Dv(t)− L\v(t) (6.3a)

for differentiable functions v ∈ ([−τ\, τ \]→ R), with

Dv(t) := v′(t) and L\v(t) :=

∫ τ\

−τ\
v(t+s)dσ(s) (for t ∈ R). (6.3b)

We regard L\ as an operator on the space C([τ\, τ
\] → R) of continuous real-valued functions and

M\ as an operator on the space of differentiable real-valued functions on [τ\, τ
\], with supremum

norm (D is an unbounded operator on this space). The equation M\u(t) = 0 in (6.2) now defines a
wide class of autonomous linear differential equations.

Definition 6.1 (Real or complex-valued functions). Suppose that v∈C(R→ R). We use the
notation L\{v(t)} as a synonym for L\v(t) and M\{v(t)} as a synonym for M\v(t) when v is
differentiable. Now if v is a complex-valued function (v ∈ C(R→ C), with v1(t) = <{v(t)} and
v2(t) = ={v(t)} for t ∈ R), M\{v(t)} will denote M\{v1(t)}+iM\{v2(t)}.
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Remark 6.1. Some authors consider equations M\u(t) = 0 that hold only for t ∈ [−τ,∞). Any
solution for t ∈ R is obviously a solution in the sense of these authors (i.e., “on the half-line
[−τ,∞)”). In our work, we are interested in the properties of solutions for t ≥ 0, in particular as
t→ +∞.

In (6.3), the function v is to be differentiable, and σ is of bounded variation. Suppose that σ is
a (so-called staircase) step function with a finite number of jumps at the points {sj}. Then (6.3b)
assumes the form L\v(t) :=

∑
j γj v(t + sj), where −τ\ ≤ sj ≤ τ \ for all j. Alternatively, suppose

that σ is absolutely continuous. Then (6.3b) assumes the form L\v(t) :=

∫ τ\

−τ\
v(t+s)γ(s)d(s), with

γ(s) = σ′(s). If σ decomposes as the sum of such a discontinuous part and an absolutely continuous
part then

M\v(t) = v′(t)− L\v(t) and L\v(t) :=
∑
j

γj v(t+ sj) +

∫ τ\

−τ\
v(t+ s)γ(s)d(s). (6.4)

When u is a solution it is supposed differentiable; however, v does not have to be differentiable (nor
even continuous) for the expression for L\v(t) on the right of (6.4) to have a meaning – we only
require the sum and Riemann integral to be defined.

Example 6.1. The equation that corresponds to (6.4) reads

u′(t) =
∑
j

γj u(t+ sj) +

∫ τ\

−τ\
u(t+ s)γ(s)d(s). (6.5)

We use examples of (6.5) to illustrate the classes of equation in Definition 5.2. Suppose τ0, τ0, and

τ±k non-negative, β and γ are non-trivial, and
∑K

0 {|bk|+ |ck|} 6= 0. Consider

u′(t) = au(t)+

K∑
k=1

bku(t−τk)+

K∑
k=1

cku(t+τk)+b0

∫ 0

−τ0
u(t+s)β(s)ds+c0

∫ τ0

0

u(t+s)γ(s)ds. (6.6)

This equation is of the type shown in (6.5); it is (i) of advanced type if bk = 0 for all k ∈
{0, 1, 2, · · · ,K} and (ii) of retarded type if ck = 0 for all k ∈ {0, 1, 2, · · · ,K}.

7. Qualitative behaviour of solutions

Much of the literature relating to the qualitative behaviour of solutions of functional differential
equations is concerned with the asymptotic behaviour of solutions. As we remarked earlier, this
involves investigating the existence (or otherwise) of characteristic values with positive real part-
see, for example, [2, 7], see also [1] for further background. Less common is the approach we adopt
here, which focuses on oscillatory behaviour.

7.1. Definitions related to Oscillation & Non-oscillation

The literature includes, for a variety of equations expressible in the form (6.3), studies on methods
for determining whether some of the solutions of such an equation are non-oscillatory or all are
oscillatory, and a rôle for the corresponding characteristic function in the study of this issue is
documented. We refine existing definitions and results and discuss the choice of canonical equations.
First we consider again the definition of oscillatory function:

Definition 7.1 (Non-oscillation and oscillation of a function). A real-valued function of a real
variable, x ∈ (R → R), is said to be non-oscillatory – to be precise, non-oscillatory about zero for
increasing argument – when there exists T <∞ such that

sign{u(t1)} × sign{u(t2)} 6= −1 for all t1, t2 ≥ T. (7.1)

When a function is not non-oscillatory (as above) then it is called oscillatory (about zero, for in-
creasing argument).
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Remark 7.1. (a) The words “for increasing argument” in Definition 7.1 are in general omitted as
also, with less justification, are the words “about zero”. (b) According to Definition 7.2, for the null
function v0 (with v0(t) ≡ 0), sign{v0(t′1)} = sign{v0(t′2)} = 0 for all t′1, t

′
2 by our definition of the

sign function. Thus, the function u0 that vanishes everywhere is oscillatory.

To cover behaviour as t → −∞, where solutions are defined for negative arguments, we say that
a function v, whose domain includes (−∞, 0], is non-oscillatory for decreasing argument if the
function v− with v−(t) = v(−t) for t ∈ R is non-oscillatory for increasing argument, and oscillatory
for decreasing argument if the function v− is oscillatory for increasing argument.

7.2. Properties of the characteristic roots: Cases with sign{limx→−∞ χM\
(x)} = −sign{limx→+∞ χM\

(x)}
The meaning of the sign of a number is not universally accepted, so we state the definition that

we use:

Definition 7.2 (The sign of a finite or infinite real number w). We define

sign(−∞) = −1, sign(0) = 0, sign(+∞) = +1, sign(w) = w/|w| otherwise, for w ∈ R. (7.2)

Theorem 7.1 (Sufficient conditions for a real characteristic value). The characteristic func-
tion χM\

has at least one real zero if and only if

sign{ inf
x∈R

χM\
(x)} × sign{sup

x∈R
χM\

(x)} ∈ {−1, 0}. (7.3)

Further, the characteristic function χM\
has an odd number of real zeros (counting according to

multiplicity) if and only if sign{limx→−∞ χM\
(x)} = −sign{limx→+∞ χM\

(x)}.

[Proof: : Follows immediately from the continuity of χM\
]

Example 7.1. Consider the case M\u(t) = u′(t)− au(t− τ1)− bu(t)− cu(t+ τ2) with τ1,2 > 0, for
which χM\

(ζ) = ζ − a exp(−τ1ζ)− b exp(ζ)− c exp(+τ2ζ) when ζ ∈ C and

χM\
(x) = x− a exp(−τ1x)− b exp(x)− c exp(+τ2x) where x ∈ R. (7.4)

It can be verified that M\ ∈ L]. Now

sign{ lim
x→−∞

χM\
(x)} = −1 if a ≥ 0; sign{ lim

x→−∞
χM\

(x)} = +1 if a < 0; (7.5a)

sign{ lim
x→+∞

χM\
(x)} = +1 if

(
c < 0 or
c = 0 & b ≤ 0

; sign{ lim
x→+∞

χM\
(x)} = −1 if

(
c > 0 or
c = 0 & b > 0

.

(7.5b)
Then (7.3) holds in the following cases:

a ≥ 0 & {c < 0, or c = 0 & b ≤ 0}
or

a < 0 & {c > 0, or c = 0 & b > 0}
. (7.6)

7.3. A case with sign{limx→−∞ χM\
(x)} = sign{limx→+∞ χM\

(x)}
Consider a case in which sign{limx→−∞ χM\

(x)} 6= −sign{limx→+∞ χM\
(x)} so that Proposition

7.1 does not apply. To develop the discussion, impose the assumption that χM\
is concave either

downwards or upwards, in a strict sense. (E.g., if χM\
is strictly concave downwards χM\

(λx1 +

(1− λ)x2) > λχM\
(x1) + (1− λ)χM\

(x2) for x1 6= x2, λ ∈ (0, 1), and lim
x→±∞

χM\
(x) = −∞.) Thus,

either χ′′
M\

(x) < 0 for all x ∈ R or χ′′
M\

(x) > 0 for all x ∈ R. (7.7)
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Equivalently, since χM\
(x) = x − ωL\(x) (x ∈ R),

either ωL\
′′(x) > 0 for all x ∈ R or ωL\

′′(x) < 0 for all x ∈ R (7.8)

and ωL\ is strictly concave (upwards or downwards). In the first case (also called “convex”):

ωL\(λx1 + (1− λ)x2) < λωL\(x1) + (1− λ)ωL\(x2) (when x1 6= x2 and λ ∈ (0, 1) (7.9)

and sign{ lim
x→−∞

ωL\(x)} = sign{ lim
x→+∞

ωL\(x)} = 1 while, in the second case, sign{ lim
x→−∞

ωL\(x)} =

sign{ lim
x→+∞

ωL\(x)} = −1.

Theorem 7.2. Given the characteristic function χM\
(x) = x− ωL\(x) , suppose that the analytic

function ωL\ is concave on R. Then one of the following possibilities holds (i) χM\
has no real zeros;

(ii) χM\
has one zero ζ\ where χ′

M\
(ζ\) = 0; (iii) χM\

has two distinct real zeros ζ\1 and ζ\2.

[Proof: For definiteness suppose that ωL\ is concave upwards (and a line segment between two points
on the graph lies above the graph connecting the two points). Real zeros of ωL\ arise if x = ωL\(x)
for some x ∈ R. The case (i) arises when x < ωL\(x) for all x ∈ R; the case (ii) arises when the line
y = x is tangential to the curve y = ωL\(x) and there are then “two coincident zeros”; for case (iii)
the line y = x intersects the curve y = ωL\(x) in two distinct points and there are two distinct real
zeros of χM\

. The case where ωL\ is concave downwards is analogous.]

Example 7.2. Consider the case

M\u(t) = u′(t)− b1u(t− τ1)− au(t)− c1u(t+ τ1) with τ1 > 0

(a simplified version of (6.6)), for which

χM\
(x) = x− b1 exp(−τ1x)− a− c1 exp(+τ1x)

can be written, when x is real, as

χM\
(x) =x− a0 −A sinh(τ1x)−B cosh(τ1x) for x ∈ R. (7.10)

A = c1 − b1, B = b1 + c1. (7.11)

We observe the following:

1. If A = 0 and B > 0 (i.e., c1 = b1 > 0) then ωL\(x) = B cosh(τ1x) so ωL\ is concave upwards
and Proposition 7.2 holds.

2. If A = 0 and B < 0, then ωL\ is concave downwards.

3. On the other hand, if B = 0 then χM\
(x) = x − a − A sinh(τ1x) and Proposition 7.1 applies

for every A ∈ R.

If A = 0 (i.e., whenever c1 = b1) the deviating arguments , with values t± τ1, are symmetrically
placed about t and are given equal weight in the expression M\u(t).

7.4. Equations that are oscillatory or non-oscillatory

We employ the following4 terminology.

Definition 7.3 (Equations that are oscillatory or non-oscillatory). A scalar homogeneous and
autonomous equation M\u(t) = 0 is called oscillatory (for increasing argument) if all of its solu-
tions are oscillatory for increasing argument, in the sense of Definition 7.1 – otherwise, it is called
non-oscillatory (for increasing argument).

4Other definitions can be found in the literature; some apply to functions defined on a half-line; some definitions
apply to vector-valued functions.
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The corresponding definitions “for decreasing arguments” (when solutions are defined on the
whole set R) should be inferred. According to Definition 7.3, the class of non-oscillatory equations
M\u(t) = 0 consists of those equations that have at least one solution that is non-oscillatory for
increasing argument.

Every equationM\u(t) = 0 has the null function u(t) ≡ 0 amongst its solutions. In consequence,
no equation M\u(t) = 0 would be oscillatory unless we regard the null function as oscillatory, and
Definition 7.1 ensures that this is the case. An alternative approach would be to modify Definition
7.3 by requiring M\u(t) = 0 to be called oscillatory if all of its non-zero solutions are oscillatory.

7.5. Criteria involving the characteristic function

It is clear that if χM\
has a zero ζ\ ∈ C with non-zero imaginary part then the equationM\u(t) =

0 possesses some oscillatory solutions since at least one of the characteristic solutions is oscillatory
both for increasing argument and for decreasing argument). What is not immediately obvious is
whether none of the solutions are oscillatory if all the zeros of the characteristic function χM\

are

real numbers.
It is apparent from the literature that the direct correlation between oscillatory solutions and the

zeros of the characteristic function holds for certain classes of equations but not for all. Krisztin [10]
(see also [8, 9]) gives an example showing that (5.4) may have a nonoscillatory solution in spite of
the fact that the corresponding characteristic equation has no real roots. The root of the difficulty
can be identified if we introduce the following definitions.

Definition 7.4 (Expansions in weighted sums of characteristic functions). and the class EM\

Suppose that {ξ`}∞0 are the characteristic values of L\ and ξ` is a characteristic value of finite
multiplicity n`:

χM\
(ξ`) = χ′

M\
(ξ`) = · · · = χn`−1

M\
(ξ`) = 0 (for ` ∈ {0, 1, 2, · · · }), χn`

M\
(ξ`) 6= 0. (7.12)

A solution u of the equationM\{u}(t) = 0 (t ∈ R) is said to be expandable in weighted characteristic
functions of L\ if it can be expressed

u(t) =

∞∑
`=0

a`Ω`(t) for t ≥ 0, (7.13)

where the functions {Ω`(t)} have the form Ω`(t) = P`(t) exp(ξ`t), in which P` is some polynomial of
degree n` − 1. If (7.13) holds, we write u ∈ EM\

.

In the above , the functions {Ω`} are polynomial multiples of characteristic functions.
The class EM\

is related to the class of exponentially bounded functions 5. A real-valued function
v whose domain includes the positive real numbers is exponentially bounded if there exist κ > 0 and
α ∈ R such that supt≥0 |v(t)| ≤ κ exp(αt).

Definition 7.5 (Oscillatory & non-oscillatory equations in a weak sense). A homogeneous
autonomous scalar equation M\u(t) = 0 is called non-oscillatory in a weak sense if all of the so-
lutions u contained in EM\

are non-oscillatory for increasing argument, in the sense of Definition
7.1; – otherwise, it is called oscillatory in a weak sense.

Proposition 7.1. The equation M\u(t) = 0 is non-oscillatory in a weak sense (for increasing
argument) if it is non-oscillatory (for increasing argument) in the sense of Definition 7.3.

5For a class of equations discussed in [10], Krisztin establishes that all “non-oscillatory solutions” are exponentially
bounded.
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7.6. The class L] of operators L\
For a given family of operators L\, a question of interest is whether the term “non-oscillatory”

and “non-oscillatory in a weak sense” mean the same thing. We introduce the class L] of operators
L\ to avoid this uncertainty. We later provide a refinement (see Definition 7.7) in which we define
a class L ⊇ L].

Definition 7.6 (The class L] of operators L\ ). We state thatM\ ∈ L] if the equationM\u(t) =
0 is oscillatory when and only when all the characteristic values have non-zero imaginary parts.

Assumption 7.1. We assume that M\ ∈ L].

Remark 7.2. The literature contains necessary or sufficient results for validity of Assumption 7.1
in the case of equations L\u(t) = 0 that have only retarded arguments. For mixed equations, Krisztin
[10, Assumption H] has given a sufficient condition for Assumption 7.1 to be valid. In the original
source, Krisztin took [−τ, τ ] to be [−1, 1] and considers systems of equations. He states a more
complex condition and deduces the results stated below as corollaries. When applied to the scalar
equation M\u(t) = 0 with M\ as in (6.3) his analysis yields results stated here.

Unless stated otherwise, Assumption 7.1 is taken as given, but a useful alternative approach
follows on using the next definition.

Definition 7.7 (The class L of operators L\ ). We write M\ ∈ L if a necessary and sufficient
condition for M\u(t) = 0 to be oscillatory in the weak sense is that all characteristic values have
non-zero imaginary parts; equivalently no zeros of the characteristic function χM\

are purely real.

7.7. Existing results on L]

Proposition 7.2 (A condition from the work [10] of Krisztin). Suppose σ definesM\ in (6.3).
Assumption 7.1 is valid when σ has an atom at τ , i.e., σ satisfies the condition

lim
r↗τ

σ(r) 6= σ(τ). (7.14)

Assumption 7.1 may hold even when σ does not have an atom at τ .

Proposition 7.3. Suppose that (7.14) is valid; then M\u(t) =
∫ τ
−τ u(t+ s)dσ(s) can be written

M\u(t) = ηu(τ) +

∫ τ

−τ
u(t+ s)dδ(s) (η 6= 0) (7.15)

where the variation VA
B(δ) (cf. Defn 3.2) satisfies lim

ε→0+
Vτ
τ−ε(δ) = 0.

Remark 7.3. Recall that the functions σ∗, where σ∗(r) = −σ(−r), generate M\ and M\
∗ with the

corresponding characteristic functions χM\
and χM\

∗ , and all the zeros of χM\
∗ have non-zero imag-

inary part if and only if the zeros of the zeros of χM\
have the same property. However, when σ

satisfies (7.14) there is (in general) no guarantee that the function σ∗ satisfies the corresponding
requirement guaranteeing that M\

∗ ∈ L]. In general,

M\ ∈ L] 6=⇒ M\
∗ ∈ L] (7.16)

We conclude that non-oscillatory in a weak sense and non-oscillatory are not equivalent properties.
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8. Conclusions: Towards a Family of Canonical Equations for Oscillation

As motivation, let us observe that advanced, retarded, and mixed type equations have very
different properties, and without additional information on dσ(s) the qualitative behaviour cannot
be deduced if we work an equation of a different type. In the same way that the dynamics of the
canonical ordinary differential equation

u′(t) = λu(t) (8.1)

provides inadequate insight to the dynamics of the canonical retarded differential equation

u′(t) = λu(t− 1) (8.2)

so the retarded differential equation provides surprisingly little insight into the behaviour of the
advanced or mixed-type equation.

Accordingly, the search for a single (or small class of) canonical problem that can be fully analysed
and used to classify more general problems remains open. and will be the subject of further work.

Nevertheless, the authors take the view that the material reviewed and presented here provides
simple methods to analyse oscillatory behaviour and also highlights the potential for misunderstand-
ing and for drawing incorrect conclusions from an incomplete analysis. Further, the analysis of both
oscillatory and stability behaviour for specific examples of equations of the form (∗) in the Abstract
is tractable using the approaches described here.
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