Deception Detection and Truth Detection Are Dependent on Different Cognitive and Emotional Traits: An Investigation of Emotional Intelligence, Theory of Mind, and Attention

Suzanne L. K. Stewart¹,*
Clea Wright¹
Catherine Atherton¹,²

¹ Department of Psychology, University of Chester, Parkgate Road, Chester CH1 4BJ, UK
² School of Psychology, Bangor University, Brigantia Building, Penrallt Road, Bangor, Gwynedd LL57 2AS

* Corresponding author: Dr Suzanne L. K. Stewart, s.stewart@chester.ac.uk

Word count: 10,168
Abstract

Despite evidence that variation exists between individuals in high-stakes truth and deception detection accuracy rates, little work has investigated what differences in individuals’ cognitive and emotional abilities contribute to this variation. Our study addressed this question by examining the role played by cognitive and affective theory of mind (ToM), emotional intelligence (EI), and various aspects of attention (alerting, orienting, executive control) in explaining variation in accuracy rates among 115 individuals [87 women; mean age = 27.04 years (SD = 11.32)] who responded to video clips of truth-tellers and liars in real-world, high-stakes contexts. Faster attentional alerting supported truth detection, and better cognitive ToM and perception of emotion (an aspect of EI) supported deception detection. This evidence indicates that truth and deception detection are distinct constructs supported by different abilities. Future research may address whether interventions targeting these cognitive and emotional traits can also contribute to improving detection skill.

Key words: Deception; social cognition; emotional intelligence; theory of mind; attention
Deception Detection and Truth Detection Are Dependent on Different Cognitive and Emotional Traits: An Investigation of Emotional Intelligence, Theory of Mind, and Attention

A successful lie pays dividends to the liar if he/she gets away with a severe personal or moral transgression, even if it harms individual victims or society at large. Thus, people have a personal and social interest in preventing or minimizing such harm by catching liars -- and by not falsely accusing truth-tellers. However, some scientific evidence has shown that variation exists across individuals in the ability to accurately identify truths and lies. This paper presents an exploration of possible sources of this variation by analyzing whether particular individual traits underlie differences in accuracy rates for high-stakes truth and deception detection.

Deception

Deception (lying) is “a successful or unsuccessful attempt, without forewarning, to create in another a belief which the communicator considers to be untrue” (Vrij, 2008, p.15). It is a deliberate act of controlling information in order to manipulate other’s beliefs, or their psychological or cognitive states (Buller & Burgoon, 1996). The purpose is usually to hamper the decision-making abilities of the receiver of the deceptive communication (Wardle & Gloss, 1982). A related concept is veracity, which is an umbrella term for both deception and honesty. Here, we use the terms liars for individuals who make deceptive statements, truth-tellers for individuals who make honest statements, and truth/deception detection for the process in which observers identify truth-tellers and liars, respectively. Targets refers to individuals who are being observed who could potentially be either a truth-teller or a liar. Researchers contrast high-stakes deception in which the consequences of being caught lying can be severe, e.g., hiding the commission of a serious crime, versus low-stakes deception for which the consequences of lying are mild or moderate, e.g., guests complimenting a host for a delicious meal when it was anything but. Typically, researchers measure ability to
accurately assess veracity through *discrimination accuracy*, which requires participants to make a forced-choice response about whether an individual is lying or being truthful (Bond & DePaulo, 2006). Meta-analytic findings (Bond & DePaulo, 2006) show that people perform consistently (but statistically significantly) just above chance at low-stakes discrimination accuracy. Frequently, this is explained as resulting from *truth bias*, a heuristic which stems from individuals tending to judge statements as truthful because of their experience of everyday social interactions tending to be truthful (Mann, Vrij, & Bull, 2004). This occurs because observers use base rate information (i.e., previous experience) when clear indicators of deception are unavailable (Street, Bischof, Vadillo, & Kingstone, 2016). Consequently, truths tend to be accurately identified more often than lies in detection research. However, greater variance exists in high-stakes discrimination accuracy (Mann & Vrij, 2006; Mann et al., 2004; Mann, Vrij, & Bull, 2006; Vrij & Mann, 2001a; Vrij, Mann, Robbins & Robinson, 2006; Wright Whelan, Wagstaff, & Wheatcroft, 2015a). One explanation for this is that because people may have a greater expectation of deception in high-stakes situations, truth bias is less influential. In other words, because the contextual base rate (e.g., truth bias) is less reliable in high-stakes situations, diagnostic behavioral cues from individual targets may be relied upon more (Street et al., 2016).

The Leakage Account versus the Few Transparent Liars Account

In considering whether and why observers vary in their discrimination accuracy, we must first evaluate the assumption that *discernible* high-stakes truthful and deceptive contexts exist. One relevant, prominent explanatory framework is the “Leakage Account” (Buller & Burgoon, 1996; Ekman & Friesen, 1969), as we refer to it here. This account suggests that although liars are motivated to successfully and performatively mimic truth-telling to avoid the consequences of being caught, the emotionality and cognitive load involved in lying can lead to “leakage” of verbal and non-verbal cues that distinguish liars from truth-tellers.
Specifically, liars and truth-tellers evidence differing intensities and frequencies of verbal and non-verbal behaviors that cumulatively produce observable, distinctive patterns (Harpster, Adams, & Jarvis, 2009; ten Brinke & Porter, 2012; Wright Whelan, Wagstaff, & Wheatcroft, 2014, 2015b). For example, liars produce more speech errors (Sporer & Schwandt, 2006) and head shakes (Wright Whelan et al., 2014), and use more equivocal or evasive language (ten Brinke & Porter, 2012). The Leakage Account has dominated much of the deception detection literature; however, its explanatory power is limited because, to date, research has not identified any single cue that is diagnostic of lying and because both lying and truth-telling can be emotional and subject to cognitive load (Vrij, Granhag, & Porter, 2010) which creates ambiguous displays of emotional stress. Therefore, even if leakage can be identified in research, many real-world observers may fail to recognize leaked cues to the extent that they can only be moderately successful detectors.

Criticism of the Leakage Account comes from Levine (2010) who utilized Bond and DePaulo’s (2006) meta-analysis to demonstrate that the average discrimination accuracy rate is consistently only slightly above chance. Levine argues that this stems from a few “bad” liars who are so leaky that most observers accurately identify their lies, while most liars are generally successful. We refer to this explanation, as Levine does, as the “Few Transparent Liars” (FTL) Account. Furthermore, Levine et al. (2011) found that demeanor complicates detection by adding “noise”: some targets appear more or less honest regardless of their veracity. Thus, observers may evaluate targets’ demeanor even though this is generally independent of any leaked diagnostic cues. Demeanor means that variation within groups of liars and groups of truth-tellers exists in addition to the variation that exists between liars versus truth-tellers: some people will be convincing liars (and others unconvincing), and some truth-tellers may be frequently doubted (and others frequently believed).
Thus, the Leakage and FTL Accounts give different explanations about the degree to which liars and truth-tellers evince useful cues to their veracity. Accordingly, it is consistent with the Leakage Account that high-stakes observers also vary greatly in their ability to detect those cues; in contrast, the FTL Account would suggest that observers do not demonstrate variation in their abilities and consequent accuracy because accuracy is almost totally dependent on the opacity of most liars and the transparency of a few.

Are truth and deception detection distinct?

The controversy over the degree to which observers vary in their discrimination accuracy could be due to a lack of construct validity. Rather than conceptualizing the discrimination of truths and lies as a singular ability, Levine, Sun Park, and McCornack (1999) suggest that truth and deception detection represent distinct abilities as demonstrated by differential accuracy rates in studies that compute them separately. Imaging work supports this supposition because additional brain areas are required when processing lies versus truths (Lissek et al., 2008). Varied accuracy rates are, in part, caused by truth bias, meaning that recognizing false information requires greater mental effort in everyday contexts (Levine et al., 1999). However, because truth bias is less influential when lying is expected (Mann et al., 2004), accurate high-stakes truth and deception detection may be similarly effortful yet competence in either may engage different cognitive and emotional resources. These different resources may underlie the perception and successful interpretation of the distinctive behavioral patterns displayed by high-stakes truth-tellers and liars. Evidence of this would prompt the reasonable conclusion that truth and deception detection are (at least partially) distinct because some of the key underlying mechanisms that influence detection skill are non-overlapping.
What individual differences might support truth and deception detection?

Consistent with the Leakage Account, variance in accuracy rates among high-stakes observers could be due, in part, to variance in observers’ abilities to perceive and understand the meaning of targets’ verbal and non-verbal behaviors and to use them diagnostically. This process likely draws on cognitive and emotional resources (Wojciechowski, Stolarski & Matthews, 2014) and so individual differences in these relevant resources may contribute, especially as accurate judgements may rely on integrating and understanding how targets’ behaviors relate to each other in internally (in)consistent ways (DePaulo et al., 2003; Wright & Wheatcroft, 2017). However, little research has consistently shown what personal factors might support accurate detection (Aamodt & Custer, 2006), and even less has investigated the contribution of specific cognitive and emotional resources. Evaluation of relevant findings is complicated by the potential limitations of operationalizing truth and deception detection as a single construct, which has been the tendency of most research. In this section, we outline some relevant cognitive and emotional abilities that are potential contributors to variation in truth and/or deception detection skill.

Theory of Mind

One contributor may be natural variation in Theory of Mind (ToM), which is the ability to understand others’ mental states and predict their behavior (Premack & Woodruff, 1978). Recently, researchers have identified two types: cognitive ToM, which involves explicit, detached, effortful reasoning, and affective ToM, which involves implicit, emotionally-based, instinctive judgements (Shamay-Tsoory, Tomer, Berger, Goldsher, & Aharaon-Peretz, 2005). Using video clips of a gameshow based on the Prisoner’s Dilemma, Sylwester, Lyons, Buchanan, Nettle, and Roberts (2012) found that better affective ToM supported the identification of co-operators (consistent mental states and behaviors; truthful
intentions) but hindered the identification of defectors (inconsistent mental states and behaviors; deceptive intentions), which is also evidence that differential processes may support truth versus deception detection. In another study, Sylwester et al. found no relationship between cognitive ToM and the accurate identification of previous co-operators and defectors from photographs; however, photographs poorly replicate real-life contexts. Other work demonstrated that training observers to explicitly use their mentalizing capacity in actively interviewing suspects led to improved discrimination accuracy (Gran Hag & Hartwig, 2008). Despite these intriguing findings, the published literature examining the contribution of ToM to discrimination accuracy remains limited in scope. However, both forms of ToM could plausibly contribute to accurate detection. Affective ToM may enable observers to effectively perceive and decode emotional mental states (such as guilt) that are involved in high-stakes scenarios. Cognitive ToM may support observers in accurately reasoning about others’ behaviors (and their underlying, causative mental states) to understand that inconsistent verbal and non-verbal cues may indicate a deceptive mental state while consistent verbal and non-verbal cues may indicate an honest one.

Emotional Intelligence

Another possible contributor to variation in detection skill is emotional intelligence (EI). Definitions of EI vary, but generally researchers agree that EI describes intrapersonal and interpersonal competencies that converge on emotion perception, regulation, understanding, and utilization (Ciarrochi, Chan & Caputi, 2000). This may be important in truth and deception detection; for example, Warren, Schertler, and Bull (2009) found that the ability to recognize emotional facial expressions was related to accurate detection of emotional lies/truths. EI is conceptually linked to ToM, as there is some overlap in the recognition of others’ emotional states, but they are distinct constructs (Ferguson & Austin, 2010). ToM comprises the ability to infer others’ mental states and to predict others’
behavior, though there can be an emotional component to some mental states in the case of affective ToM. Models of EI have been both ability-based (Salovey & Mayer, 1990) and trait-based (Bar-On, 2006). Trait EI relates to personality and is often measured through self-report. Ability EI relates to intelligence models of skills, in which EI has the potential to develop, and is often examined through performance-based measures (Schutte et al., 1998, Schutte, Malouff, & Bhullar 2009). Schutte, Malouff, and Thorsteinsoon (2013) write: “Ability emotional intelligence consists of an individual’s actual capacity for adaptive emotional functioning. The individual may or may not act on this capacity depending on factors such as the individual’s motivation and the opportunities and demands of situations. Trait or typical emotional intelligence describes to what extent an individual actually displays emotional competencies in everyday life” (pp. 63). Many studies have shown that both trait and ability EI can be improved by training (Schutte et al., 2013).

A handful of studies have examined whether more highly developed EI facilitates discrimination accuracy. Wojciechowski et al. (2014) found that ability EI promotes the recognition and use of subtle facial expressions as potential cues to veracity. They also concluded that greater EI may enable the integration of perceived affective/non-verbal and cognitive/verbal cues and the identification of inconsistencies between these cues, which is notable because inconsistent cues can signal deception. However, Baker, ten Brinke, and Porter (2013), using a trait measure of EI, found that global EI was not related to discriminating between high-stakes, emotional truths and lies. Instead, a negative relationship existed between the emotionality factor of EI (perceiving and expressing emotion) and detecting liars. The researchers suggested that highly emotionally intelligent individuals may be gullible to deception because they are less able to temper their empathy with detached reasoning; hence, they may develop sympathy for liars and wrongly judge them as truthful. Importantly, the findings also suggest the possibility that EI is differentially related to truth
versus deception detection. Fellner et al. (2007) found that higher trait EI was unrelated to
detection and processing of simulated emotional facial expressions. Self-report trait EI
measures may not accurately reflect ability and may be vulnerable to overconfident and
misleading responding (Fellner et al., 2007; Petrides, Perez-Gonzalez & Furnham, 2007).
These equivocal findings may derive partly from differences in measurement (trait- versus
ability-based EI) and stimulus materials (simulated versus real, high-stakes emotions), and so
more research is necessary. The present work focused on trait EI as a self-reported indication
of everyday emotional skills because it likely has less overlap with ToM; both ToM and
ability EI are usually examined through performance-based measures. Indeed, Qualter et al.
(2011) found that ability EI was linked to two different ToM measures in younger and older
children, while trait EI was only linked to the more sophisticated ToM measure in older
children.

Attention

While some research has examined the role of cognitive functions in producing lies
(e.g., Christ, van Essen, Watson, Brubaker, & McDermott, 2009), little work has examined
the role of cognitive functions in detecting lies. Existing studies often investigate higher
cognitive functions (Fellner et al., 2007), even though basic cognitive functions, such as
attention, may be essential. Directing one’s attention quickly and appropriately may facilitate
relevant cue perception. Some evidence suggests that some aspects of attention (gaze
perception, joint attention) are critical to detecting deception (Frischen, Bayliss, & Tipper,
2007). On the other hand, Phillips, Tunstall, and Channon (2007) found that detecting
deceptive social cues does not require additional attentional resources (working memory
load) compared to other types of (truthful) social cues. In the current study, we examine three
related attentional processes. Faster alerting (initiating and maintaining an alert state) may be
necessary to perceive relevant cues. Faster orienting (selectively focusing on a stimulus) may
help individuals pay attention to particular diagnostic cues. Finally, better executive control (attending to appropriate responses while inhibiting conflicting ones) may aid truth detection and particularly deception detection by allowing an observer to suppress responses generated from inconsistent observed cues or through truth bias.

The present study

One explanation for the inconsistent findings outlined above is that operationalizing truth and deception detection as a single construct obscures the different contributions of EI, ToM, and attention to each. Furthermore, the two highlighted accounts make differing predictions about truth and deception detection and individual differences. The Leakage Account suggests that targets vary greatly in their leakiness. Empirical evidence supportive of this account demonstrates that, in turn, observers vary greatly in their high-stakes discrimination accuracy. The Leakage Account would be supported by evidence of the intersection of these in which less transparent targets are typically judged accurately by the most skillful observers (with some lucky guesses from others) while more transparent targets are judged accurately by both more- and less-skillful observers. The Leakage Account would be further supported by evidence that individual differences ToM, EI, and attention are predictive of variation in accurate veracity judgements.

In contrast, the FTL Account suggests that a dichotomous split exists between a few transparent liars and the rest. Thus, the FTL Account predicts that targets’ transparency and observers’ skill do not intersect because observers’ accuracy is based on the transparency of some targets and the opacity of the rest, rather than variation in observers’ capacity. Therefore, because it suggests a lack of natural variation in observers’ detection ability, the FTL Account would be consistent with evidence of no predictive relationship between individual differences in ToM, EI, and attention and any variation in accurate veracity judgements.
Therefore, using an exploratory approach, we investigated two main questions. First, is there a relationship between observer skill and target transparency? We computed the percentages of observers who correctly categorized each target (higher percentages indicate more transparent liars and truth-tellers) and the mean overall accuracy rates of the observers who correctly categorized each target (higher means indicate that the group of observers are generally more skillful). A negative relationship between these would demonstrate that as the percentage of observers who correctly categorized each target decreases (i.e., due to targets demonstrating decreasing transparency across the sample of targets), the mean accuracy rate of correct observers for each target increases (i.e., correct observers demonstrate increasing skill); this would be consistent with the Leakage Account. No relationship would be consistent with the FTL Account. The second key question was whether individual differences in EI, affective ToM, cognitive ToM, and attention (alerting, orienting, and executive control) contributed to variation in truth and deception detection. We predicted that distinctive, non-overlapping groupings of these abilities underlie truth versus deception detection accuracy. However, we could not predict exactly which of these processes would support one versus the other because of the limited scope of the literature and the inconsistent findings of existing research.

Methods

Participants

University staff and students were recruited via opportunity sampling (see Table 1 for sample characteristics). Participants were reimbursed with £15 and student participation credits where applicable ($n = 30$). The sample size of 115 was determined with an a priori power analysis utilizing parameters of Cohen’s $f^2 = 0.15$, power $= 80\%$, and $\alpha = .05$ for nine predictors (Faul, Erdfelder, Buchner, & Lang, 2009).

(Table 1 about here)
Participants were required to be native or fluent English speakers and have no serious visual or hearing impediments. The study was given ethical approval by the University of Chester Department of Psychology Ethics Committee and executed according to the Declaration of Helsinki. Participants gave written consent.

Materials and Procedure

Six measures were administered in a laboratory setting although some were computerized, as indicated. Participants first completed a computerized demographics questionnaire presented in Bristol Online Surveys (BOS), which collected data on age, gender, ethnicity, occupation and/or studies, and languages spoken. This information was used to fully describe the sample; it was not used in the inferential analysis. The remaining measures were administered in an individually randomized order for each participant.

Assessing Emotions Scale

The Assessing Emotions Scale (AES; Schutte et al., 1998, 2009) is a self-report trait EI measure based on Salovey and Mayer’s (1990) ability-based model, which comprises expression and understanding of emotion, emotion management, and using emotions in problem solving. Participants responded to 33 statements, presented in BOS, about their experience of emotions in the self and others, including the meaning and use of emotions in their everyday lives on a five-point Likert scale (1 = do not agree to 5 = completely agree). Three items were reverse coded. The AES produces a total EI score (scored 33-165) and four subscale scores: Perception of Emotions (10 questions; scored 10-50), Managing Emotions in the Self (nine questions; scored 9-45), Managing Others’ Emotions (eight questions; scored 8-40), and Utilizing Emotions (six questions; scored 6-30). The AES has good convergent validity, internal and test-retest reliability, and discriminant validity (Schutte et al., 2009; 1998). In our sample, the Cronbach’s alphas were .727 for Perception of Emotions, .724 for Managing Emotions in the Self, .601 for Managing Others’ Emotions, and .519 for Utilizing
Emotions. We selected the AES because of its wide use and its ease of administration. Furthermore, as a self-report trait-based measure, the conceptualization of EI in the AES was thought to be distinguishable from affective ToM measured by the performance-based Reading the Mind in the Eyes test (RMET; Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 2001).

Reading the Mind in the Eyes Test

The revised RMET (Baron-Cohen et al., 2001), also presented in BOS, measured affective ToM. Participants responded to 36 greyscale pictures of eye regions (and one unscored practice item) by choosing which one of four emotion words best describes the eyes’ expression. Definitions of the response options and examples of each used in a sentence were presented. The total number of correct responses (0-36) was recorded for each participant. The RMET discriminates among groups who vary in their ToM abilities (e.g., adults with and without autism), has been widely used, and has a lower risk of ceiling effects (Baron-Cohen et al., 2001). We will refer to this predictor as “RMET Affective ToM.”

Short Story Task

The Short Story Task (SST; Dodell-Feder, Hope Lincoln, Coulson, & Hooker, 2013) measured cognitive ToM. Participants first read *The End of Something* by Ernest Hemingway (originally published 1925). Then the researcher conducted an audio-recorded structured interview which measured Comprehension (five questions), Spontaneous Mentalizing (one question), and explicit ToM Reasoning (eight questions). Participants responded freely and verbally. Responses were coded according to Dodell-Feder et al.’s (2013) instructions with the Comprehension and ToM Reasoning responses being awarded a 0, 1, or 2 depending on their accuracy and comprehensiveness. The Spontaneous Mentalizing response was awarded a 0 or 1 based on the absence or presence of spontaneous mentalizing language about the story’s characters. Scores range from 0-10 for Comprehension, 0-16 for ToM Reasoning, and
Deception detection and truth detection

0-1 for Spontaneous Mentalizing. While the SST has good inter-rater reliability and convergent validity, Dodell-Feder et al. suggested that internal reliability for ToM Reasoning would be lower due to the range of ToM areas probed. We selected the SST for cognitive ToM because it has a lower risk of ceiling effects compared to similar tests.

Prior to the present study, 12 separate participants completed the SST for the purpose of coding calibration among the researchers. Furthermore, 25% of interviews (n = 29) were coded by all authors. Inter-rater reliability was assessed using a two-way random effects intraclass correlation coefficient for single measures (Comprehension ICC = .933, 95% CI = .880 to .965; ToM Reasoning ICC = .892, 95% CI = .812 to .944) and Cohen’s kappa for Spontaneous Mentalizing (average kappa = .851). One author completed the coding for all participants. For the analysis, we used ToM Reasoning scores as a measure of cognitive ToM; we refer to this predictor as “SST Cognitive ToM.”

Attention Network Test

The Attention Network Test measures the efficiency of attention in three areas: alerting, orienting, and executive control (ANT; Fan, McCandliss, Sommer, Raz, & Posner, 2002). Alerting refers to entering and maintaining an alert state, orienting refers to selectively attending to incoming sensory information, and executive control refers to selecting appropriate responses while inhibiting conflicting ones (Fan et al., 2002). The task was presented on a laptop with a 30.48cm screen. Participants were positioned with their eyes 42.40cm away from the screen (following Fan et al.’s instructions) with their thumbs resting on the right and left trackpad buttons. Participants completed a practice block of 24 trials with feedback followed by three no-feedback experimental blocks of 96 trials each. Participants could take a break between each block, and their distance was re-measured and adjusted as necessary. Participants were briefly reminded about the instructions after each block. Each trial required participants to respond as quickly and accurately as possible to a target arrow.
by pressing the appropriate trackpad button to indicate whether the target arrow was pointing right or left. Reaction times (RT) in milliseconds (ms) and accuracy were recorded. Sometimes the target arrow was accompanied by flankers which were either lines, or arrows pointing in the same or opposite direction. Each trial contained five events. First, there was a fixation period whose duration varied randomly between 400ms and 1600ms. Then, a warning cue (no cue, center cue, double cue, or spatial cue) was displayed for 100ms. This was followed by a 400ms-long fixation period after which the target arrow (and flankers) appeared. They remained until the participant responded or for a maximum of 1700ms. Participants then viewed another fixation point for a time equal to 3500ms minus the first fixation time and minus the RT. The ANT produces three scores calculated over correct trials. The Alerting Effect equaled the mean RT of the no-cue condition minus the mean RT of the double-cue condition. The Orienting Effect equaled the mean RT of the spatial-cue conditions minus the mean RT of the center-cue condition. The Executive Control Effect equaled the mean RT of the incongruent flanker condition minus the mean RT of the congruent flanker condition. Larger values indicated greater impact of an alerting cue, greater impact of an orienting cue, and slower inhibition, respectively. Fan et al. found that raw RTs had good test-retest reliability although the test-retest correlations for each effect were .52, .61, and .77, respectively. They also found that the three effects were independent of each other. We selected the ANT because it could quickly assess three independent areas of attention and has been widely used.

Truth and Deception Detection Videos Task

We used a high-stakes truth and deception detection accuracy task following the methods of Wright Whelan et al. (2015a) but with materials expressly compiled for the present study. This paradigm has been used in several previous studies, with different populations, resulting in overall accuracy rates ranging from 49% to 72% (e.g., Canter,
Participants viewed 20 video clips of individuals making pleas for help with missing or murdered relatives in real-life criminal investigations. These pleas were originally broadcasted in news conferences and programs and were included because they satisfied stringent criteria for establishing ground truth (ten Brinke & Porter, 2012; Vrij & Mann, 2001b), were not recent and high profile in the UK, and were made soon after the event. (See the supplemental material for summaries of the cases used.) Ten pleaders were honest and ten were dishonest (as determined by outcome convictions in each case). The honest pleaders did not know what had happened to their relative, and later someone else was convicted for the relative’s disappearance or death or their relative had voluntarily disappeared. The dishonest pleaders had already killed their relative and were later convicted for involvement in the death. Pleas were selected to provide a balance of sex and relationship (e.g. partner, child) in both groups. Some videos contained more than one person, but participants were asked to respond about the main speaker. Before each video, the researcher described the familial relationship between the pleader and the missing or murdered person. Some videos also indicated the name and age of the missing person as part of the content of the broadcast; for these videos only, the researcher also verbally presented this information prior to each. Participants were asked to indicate their responses of either “lying” or “truthful” on paper. Participants were also asked to indicate if they were familiar with the case. Where participants indicated familiarity, the response to that video was discarded from scoring (63 responses total, or 2.7%). Because it was possible that responses to each video would influence subsequent responses, the presentation order was individually randomized for each participant to control for order effects. The researcher administering this task remained blind to the pleaders’ veracity. Each response (correct or incorrect) was recorded.
Most participants completed the measures in a single 1.5-hour session. Nine participants attended two sessions (four had a one-day gap; five had a one-week gap) due to personal time constraints. In rare cases, technical issues with BOS meant that paper versions of the demographic questionnaire \(n = 3 \), AES \(n = 4 \), and RMET \(n = 3 \) were administered. To check that these events did not affect the results, data from participants who had completed split sessions or who completed paper versions of computerized measures were excluded from a re-analysis of the data, but the pattern of findings remained the same.

Analysis

We initially explored the data through four analyses. First, a signal detection analysis examined the degree of bias in the detection task. Second, we used one-sample tests (t-test or Wilcoxon as appropriate) to compare the sample’s detection accuracy rates to a chance performance level designated as .50. Third, we ran a correlation between the truth and deception detection accuracy rates. Fourth, a t-test compared the difference in the mean truth and deception detection rates.

To test the first research question (whether there was a relationship between observers’ skill and targets’ transparency), we ran a correlation. We first calculated the percentage of observers who correctly categorized each target. Higher percentages indicated more transparent targets. We then calculated the mean overall accuracy rates of the observers who correctly categorized each target. Higher rates indicated that those observers tended to have higher accuracy rates overall (i.e., they tended to be more skillful observers). A negative relationship would demonstrate that as observers’ mean accuracy rates increase across the sample of targets (i.e., increasingly skillful observers), the percentage of observers who correctly categorized each target decreases (i.e., decreasingly transparent targets). This would occur because less transparent targets would be accurately categorized primarily by observers who are more skillful overall.
For our main analysis investigating the contribution of individual differences to variation in truth and deception detection accuracy, we fitted a series of mixed logit models (MLMs; Jaeger, 2008) in R (R Development Core Team, 2017) to the data. MLMs are a type of generalized linear mixed model (GLMM) that model both fixed effects (e.g., measured predictors) and multiple random effects simultaneously (see Clark, 1973) for a categorical dependent variable, allowing more variance to be modelled compared to other common analysis strategies (e.g., ANOVA or logistic regression; Jaeger, 2008). Additionally, GLMMs typically have more statistical power because individual observations for each participant can be entered as GLMMs are able to account for this interdependence (Baayen, Davidson, & Bates, 2008). For interpretation of the MLMs, we referred to Baayen et al. (2008), Barr, Levy, Scheepers, and Tily (2013), and Jaeger (2008).

The dependent variable was a categorical measure of Hits (i.e., every correct/incorrect video task response). In the full model, we entered the predictors as interactions of each fixed effect [four EI subscales, SST cognitive ToM, RMET affective ToM, and three attentional effects] with Video Condition (Lie versus Truth). This would tell us whether the fixed effects predicted Hits differently for the Lie versus Truth conditions. For the random effects, we included crossed random intercepts and slopes for Participants and random intercepts for Items (each Item being a video clip). The inclusion of random slopes for Video Condition in the Participants random effects term allows us to account for variation in each participant’s truth versus deception detection ability. Including random slopes for Video Condition in the Items random effects term was not possible as each item appeared in either the Lie or the Truth condition (see Baayen et al., 2008, for a detailed discussion of random effects structures for crossed versus nested designs). Individual Truth Detection and Deception Detection trials were entered (excluding trials where the participant was familiar with the case). Predictors that had 95% confidence intervals (CI) that did not cross zero were entered
Deception detection and truth detection

into a second model. The final model was compared to a null model that contained only the random effects terms to determine whether the final model was a significantly better fit for the data than the null model. The glmer function in the lme4 package (Bates, Maechler, Bolker, & Walker, 2015) was used to fit the MLMs using the binomial distribution in R. Laplace approximation was used to estimate the fixed effect parameters for the dependent variable (Hits). Given the number of fixed effects in the initial, most complex model, all fixed effects variables were rescaled. Model fit was checked by examining binned residual plots. The anonymized dataset and analysis code for this analysis can be found here:

https://osf.io/3f7gx/

Results

Data preparation

One hundred seventeen participants were tested, but two participants’ data were discarded because of a computer failure during data collection and because a participant voluntarily admitted to not following the ANT instructions. Data for 115 participants were used. One participant did not complete the AES so his/her data are excluded from the MLMs containing EI variables. Distributions of the predictor variables were examined. There was no evidence of multicollinearity among the predictor variables (see Table 2).

(Table 2 about here)

Data exploration

Table 1 presents the participants’ scores on the various measures. For the purpose of the signal detection analysis, correctly responding to truths = hits, correctly responding to lies = correct rejections, incorrectly responding to truths = misses, and incorrectly responding to lies = false alarms (these designations were arbitrary and apply to the signal detection analysis only). To calculate sensitivity, A’ was computed for each participant, and the sample
mean $A' = 0.58$ ($SD = 0.16$) was significantly better than chance ($t (114) = 5.56, p < .001$). To calculate bias, $B''D$ was calculated for each participant and the sample mean $B''D = -0.08$ ($SD = 0.45$). There was no significant bias ($t (114) = 1.83, p = .069$).

Forty-one participants performed above chance (designated as .50) for truth detection only, 29 for deception detection only, 29 for both truth and deception detection, and 16 for neither truth nor deception detection. The sample’s mean accuracy rate was above chance for both truth detection (58% ($SD = 15\%$), one-sample Wilcoxon signed ranks test, $p < .001$) and deception detection (53% ($SD = 17\%$), $t (114) = 2.04, p = .043, 95\% CI$ of the difference = 0.001 to 0.064). These above chance mean accuracy rates are consistent with previous studies using this paradigm (e.g., Wright Whelan et al., 2015a). The accuracy rates for truth and deception detection were not significantly correlated ($\tau = -.122, p = .082$). There was no significant difference in the mean accuracy rates for identifying truth-tellers versus liars, ($t (18) = 0.63, p = .536$).

Research question 1: Is there a relationship between observers’ skill and targets’ transparency?

We calculated the percentage of observers who correctly categorized each target as a measure of targets’ transparency ($min. = 20.18\%$ to $max. = 83.81\%$). We then calculated the mean accuracy rates of the observers who correctly categorized each target as a measure of observers’ skill ($min. = 55\%$ to $max = 63\%$). These variables were significantly negatively correlated ($\tau = -.475, p = .006$).

Research question 2: What individual differences support truth and deception detection?

The full model included the nine predictors each interacting with Video Condition, and random intercepts and slopes for Participants and random intercepts for Items. Table 3
shows the model’s parameter estimates. The only predictor interacting with Truth with a 95% CI that did not cross zero was ANT Alerting, while the predictors interacting with Lie with 95% CI that did not cross zero were SST Cognitive ToM and EI Perceiving Emotions. The positive values of their coefficients indicated that these were positive predictors of Truth Hits and Lie Hits, respectively.

(Table 3 about here)

The next model included these three predictors interacting with Video Condition and random intercepts and slopes for Participants and random intercepts for Items. However, the 95% CI for EI Perceiving Emotions crossed zero. This was a possible indicator that one of the excluded predictors acted as a suppressor.Suppressor variables are often characterized by no significant correlation with the dependent variable but may be correlated with one or more predictors. They suppress elements represented within the related predictor(s) which do not influence the outcome (Pandey & Elliott, 2010). Thus, when suppressor variables are included in the model, the coefficient of the related predictor increases and the predictive power of the model improves, even though the suppressor variable is not necessarily a significant, independent predictor of the outcome. We re-ran the full model and systematically eliminated the predictors whose 95% CI crossed zero until we arrived at a model in which the 95% CI for EI Perceiving Emotions also crossed zero, indicating that the suppressor variable had been eliminated. Because there is some conceptual overlap among the EI subscales and between ToM and EI, the EI and ToM variables were eliminated first. When EI Managing Others’ Emotions was removed, the 95% CI for EI Perceiving Emotions crossed zero, indicating that EI Managing Others’ Emotions was the likely suppressor. We re-ran the small model, including ANT Alerting, SST Cognitive ToM, EI Perceiving Emotions, and EI Managing Others’ Emotions (interacting with Video Condition) and random intercepts and slopes for Participants and random intercepts for Items. This model
Deception detection and truth detection

failed to converge. We dropped the Items random effects term to preserve the inclusion of both slopes and intercepts for Participants, as intercepts-only models may inflate Type 1 error (Barr et al., 2013). This model converged. We then constructed a model without the suspected suppressor and the same random effects structure (i.e., random intercepts and slopes for Participants). The coefficient for EI Perceiving Emotions (interacting with the Lie condition) changed from 0.102 in the model without the suppressor to 0.137 in the model with the suppressor. The two models with and without EI Managing Others’ Emotions were compared, and there was no significant difference in their fit for the data ($\chi^2 (2) = 3.32, p = .190$; AIC Model with suppressor = 3046.8 versus AIC Model without suppressor = 3046.2). Thus, because the more parsimonious model (i.e., without the suppressor) was not a better fit and produced a smaller coefficient for EI Perceiving Emotions, the model with the suppressor was selected as the final model. Table 4 shows its parameter estimates.1 All VIF values for the full and final models were less than 2.

(Table 4 about here)

A null model containing random intercepts and slopes for Participants was created. The final model was a significantly better fit for the data than the null model ($\chi^2 (8) = 19.631, p = .012$; AIC final model = 3046.8 versus AIC null model = 3050.5).

Discussion

Our exploratory study found evidence across two research questions that was consistent with the Leakage Account over the FTL account in explaining how observers succeed in passive veracity judgements. First, we found a negative relationship between target transparency and observer skill, meaning that, for example, observers who correctly

1 Both the full and final models indicated that the Participants random intercepts and slopes were highly correlated, indicating overparameterization (Baayen et al., 2008). The correlation parameter was removed and the models were re-run. The pattern of findings was the same. Because such models can inflate Type 1 error (Barr et al., 2013), we selected the model which included random slopes in order to reduce the risk of Type 1 error.
identified less transparent targets tended to be more skillful. This relationship was consistent with the Leakage Account, whereas the FTL account would have been consistent with a lack of a relationship.

Our second main analysis demonstrated that truth and deception detection accuracy are separable because variation in truth versus deception detection accuracy is supported by different individual traits and functions. Our results do not mean that the variables which were unrelated to variation in detection accuracy are necessarily irrelevant to detection; rather, any variation in these other predictors was unrelated to variation in detection accuracy. The evidence that individual differences in EI, ToM, and attention are predictive of variation in accurate veracity judgements is consistent with the Leakage Account (a lack of such a predictive relationship would have been consistent with the FTL Account).

For truths, increasing accuracy was supported by faster attentional alerting speeds. Faster alerting may facilitate efficient and effective perception and processing of multiple cues and, therefore, improve the likelihood of making accurate truth judgements – but why is this not also the case for deception detection? In the case of lying, an observer needs to “diagnose” instances when verbal and non-verbal behaviors are inconsistent with each other or the context or when they seem “false” in some way; thus, it may take only one or two instances for an observer to “falsify” the idea that the target is telling the truth. In contrast, confirmation of truth-telling will be more successful if an observer is able to collect more “evidence” of truth-telling. Less transparent truth-tellers may send weak or “noisy” signals, meaning that observers must be more alert in order to perceive these. So, while confirming the truth may require an alert observer to collect many clues to truth-telling (leading to the relationship between faster attentional alerting and more accurate truth detection), deception detection may only require one or two falsifying cues; therefore, observers do not necessarily need to possess faster alerting in order to be successful. This result is consistent with Phillips
et al.’s (2007) finding that detecting deception does not require additional attentional resources.

Furthermore, our research suggests that more successful lie detectors are better able to perceive emotions (like Warren et al., 2009) and also reason about others’ motivations, beliefs, and intentions (in contrast to Sylwester et al., 2012). A better ability to perceive emotions may help an observer become aware of a liar’s non-genuine emotional cues and/or detect emotions that suggest deceit, such as guilt. This may inform the reasoning process about the liar’s deceptive intentions, which may include the integration of (inconsistent) affective and cognitive input derived from the liar’s verbal and non-verbal behavior (Wojciechowski et al., 2014). Our results extend the findings of Baker et al. (2013), whose analyses demonstrated that highly emotionally intelligent participants developed considerable sympathy for liars, which negatively impacted their ability to accurately categorize liars. Baker et al. concluded that individuals high in EI may not engage in detached reasoning because of a tendency to focus on emotions. While our findings show that better perception of emotion supported deception detection, they also demonstrated that cognitive ToM was key, which aligns with Baker et al.’s supposition that engagement in detached reasoning would be important for identifying liars. Our findings also support the Instrumental Mind-reading Account (Granhag & Hartwig, 2008), which argues for utilizing explicit ToM skills and which has attracted evidence that this results in more accurate veracity judgements during suspect interviews. Contrastingly, variation in affective ToM was unrelated to variation in detection accuracy. A greater ability to perceive and decode emotional mental states may not necessarily help an observer recognize increasingly believable emotional displays in less transparent liars or “noisy” displays in less transparent truth-tellers. Alternatively, the potential conceptual overlap between affective ToM and EI may mean that this was incorporated in the relationship between Perceiving Emotions and deception.
detection, or that a different measure of affective ToM (e.g., involving moving, rather than static, images; Golan, Baron-Cohen, Hill, & Golan, 2006) may show different results.

In considering the suppression effect, we must reflect upon elements in the construct of Perceiving Emotions which may be suppressed by Managing Others’ Emotions and which are irrelevant to the outcome (Pandey & Elliott, 2010); this is more of a theoretical and measurement consideration than a statistical one. As measured by the AES, Managing Others’ Emotions encompasses using social skills, engaging in social interactions, and displaying empathy; these are also necessary to develop and hone one’s capacity to perceive emotions. Thus, the suppressor effect suggests that it is those aspects of Perceiving Emotions which do not overlap with Managing Others’ Emotions that were critical to deception detection accuracy; i.e., the pure recognition and understanding of emotions as independent from additional demands dictated by using social skills, engaging in social interactions, and displaying empathy, as these were not involved in our passive detection task. Where detection involves social interaction (e.g., suspect interviewing), managing others’ emotions may become a significant supporting factor. It is also worth considering why Managing Own Emotions and Utilizing Emotions were not linked to variation in accuracy. Because of the non-interactive nature of the detection task, it may be that an observer’s ability to monitor and manage his/her own emotions was unimportant. Given Baker et al.’s supposition that highly emotionally intelligent people can be gullible to liars, a greater ability to monitor and manage one's own emotions may become key in interactions (e.g., suspect interviewing). Finally, given the conceptual overlap between cognitive ToM, which involves explicit reasoning, and Utilizing Emotions, which involves emotional problem-solving, it may be that cognitive ToM could better account for the variance in deception detection accuracy.

Our results suggest that truth and deception detection are at least partially distinct: there was no overlap in the predictors of truth versus deception detection and no significant
relationship (either positive or negative) between truth and deception detection accuracy rates. Future work may achieve clearer conclusions by examining truth and deception detection separately (Levine et al., 1999; Mann et al., 2004). Both are likely complex processes that engage numerous psychological processes, more than could be explored here (e.g., processing paralinguistic cues that accompany spoken language). Indeed, there may be many more traits and abilities that contribute to truth and deception detection, for example, personality variables related to emotional processing such as those of the Dark Triad (i.e. psychopathy, Machiavellianism, and narcissism). Although some research has found no relationship between psychopathy and deception detection (e.g., Peace & Sinclair, 2012), other findings indicate potential moderation effects of sex on primary psychopathy, and also on Machiavellianism, and narcissism (e.g., Lyons et al., 2017), and the ability to detect deception. Furthermore, future research should target constructs that interact with EI, cognitive ToM, and attentional alerting. For example, mood impacts discrimination accuracy as well as EI and attention in terms of whether verbal or non-verbal cues are perceived and utilized (Reinhard & Schwarz, 2012). General cognitive ability (as measured through vocabulary ability) may influence both ToM (e.g., Charlton, Barrick, Markus, & Morris, 2009) and EI (e.g., Ferguson & Austin, 2010). Finally, while our research suggests that trait Perceiving Emotions is related to deception detection, future research should investigate the contribution of ability EI, given the equivocal nature of previous findings as well as the limitations of self-report measures such as the AES, in contrast to performance-based ability tests. While these example potential predictors were individually unmeasured in our study, the inclusion of random effects in the MLMs effectively captures the additional random variance resulting from these sources.

The effort to discover any additional unique predictors of truth and deception detection would be relevant to many areas. First, deception detection is central to many
forensic investigations. Second, because people with conditions such as autism and schizophrenia often experience deficits in ToM (Baron-Cohen et al., 2001; Brüne, 2005), EI, and attention (Eack et al., 2013), they would likely have difficulty identifying liars, making them vulnerable to manipulation and harm. Finally, a better understanding of how individuals process truths and lies is applicable to the navigation of serious social situations in relationships, such as a romantic partner engaging in an affair. Furthermore, a key implication is that interventions that directly target traits that contribute to truth and deception detection may also improve truth and deception detection accuracy. Indeed, both trait and ability EI can be developed and improved (Schutte et al., 2013), and Granhag and Hartwig (2008) demonstrated that training in utilizing cognitive ToM led to improved discrimination accuracy. Such training would be applicable to professions where veracity judgements are routinely made (e.g., human resources, parole boards, social work, and investigations of benefit and insurance claims).

One potential limitation is that the majority of participants were female and relatively highly educated. Meta-analytic findings suggest that neither sex nor education levels relate to discrimination accuracy (Aamodt & Custer, 2006), and so it is unlikely that these sample characteristics impacted the findings regarding the accuracy. However, there is some evidence that women score higher than men on some measures of EI (Joseph & Newman, 2010; Schutte et al., 1998); and, therefore, replication in samples balanced for sex would be useful. Furthermore, two EI subscales (Managing Others’ Emotions and Utilizing Emotions) lacked high reliability, which may reflect the fewer items composing these subscales. As neither subscale predicted truth nor deception detection, this limitation is unlikely to have impacted the key findings. However, it is unknown whether these constructs may have been significant predictors if their measurement had been more reliable. Future research should use an EI measure with a higher number of items.
In sum, the Leakage Account and supportive empirical work demonstrate that high-stakes truth-tellers versus liars display differing constellations of intensities and frequencies of verbal and non-verbal signals, and these signals inform the observer’s decision-making process about the target’s veracity. Our results show that improved perception and understanding of these distinctive constellations of signals relies on different traits for truthful versus deceitful contexts. Specifically, the present study demonstrated that truth and deception detection are separable constructs supported by different individual abilities: attentional alerting, and perception of emotion and cognitive ToM, respectively. Replication of these findings and the identification of other key supporting factors would greatly increase our understanding of how humans determine when they are being told the truth and when they are being lied to, and whether these traits can be bettered to improve the ability to identify truth-tellers and liars. After all, as demonstrated by real-world, high-stakes situations such as those in our study, identifying lies and truths can sometimes be a matter of life and death.
Deception detection and truth detection

References

Eack, S. M., Bahorik, A. L., McKnight, S. A. F., Hogarty, S. S., Greenwald, D. P., Newhill,

synthesis. Applied Cognitive Psychology, 20, 421-446. doi: 10.1002/acp.1190

Acknowledgement

The work was supported by a grant from the University of Chester to the first and second author.
Table 1

Participant characteristics and scores on outcome measures

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD) or %</th>
<th>Min. to max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>27.04 (11.32)</td>
<td>18 to 64</td>
</tr>
<tr>
<td>Female (%)</td>
<td>75.65</td>
<td></td>
</tr>
<tr>
<td>Role (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student</td>
<td>64.35</td>
<td></td>
</tr>
<tr>
<td>Staff</td>
<td>29.57</td>
<td></td>
</tr>
<tr>
<td>Both student and staff</td>
<td>6.09</td>
<td></td>
</tr>
<tr>
<td>Staff role (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic</td>
<td>17.07</td>
<td></td>
</tr>
<tr>
<td>Non-academic</td>
<td>82.93</td>
<td></td>
</tr>
<tr>
<td>Ethnicity (%) (one declined to answer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White/Caucasian</td>
<td>88.70</td>
<td></td>
</tr>
<tr>
<td>Minority ethnicities</td>
<td>10.43</td>
<td></td>
</tr>
<tr>
<td>Highest degree (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Certificate of Secondary Education or A-level</td>
<td>63.45</td>
<td></td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>18.26</td>
<td></td>
</tr>
<tr>
<td>Master’s degree</td>
<td>15.65</td>
<td></td>
</tr>
<tr>
<td>Doctorate degree</td>
<td>2.61</td>
<td></td>
</tr>
<tr>
<td>Fluent speakers of additional languages (%)</td>
<td>17.39</td>
<td></td>
</tr>
<tr>
<td>Truth detection accuracy rate</td>
<td>.58 (.15)</td>
<td>.20 to 1.00</td>
</tr>
<tr>
<td>Deception detection accuracy rate</td>
<td>.53 (.17)</td>
<td>.11 to .90</td>
</tr>
<tr>
<td>Component</td>
<td>Mean (SD)</td>
<td>Range</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>EI total</td>
<td>128.76 (10.49)</td>
<td>103 to 154</td>
</tr>
<tr>
<td>Perception of emotions</td>
<td>39.09 (4.71)</td>
<td>23 to 48</td>
</tr>
<tr>
<td>Managing own emotions</td>
<td>34.21 (4.77)</td>
<td>22 to 44</td>
</tr>
<tr>
<td>Managing others’ emotions</td>
<td>31.60 (3.52)</td>
<td>19 to 40</td>
</tr>
<tr>
<td>Utilizing emotions</td>
<td>23.87 (2.68)</td>
<td>17 to 30</td>
</tr>
<tr>
<td>RMET total</td>
<td>27.53 (3.55)</td>
<td>14 to 35</td>
</tr>
<tr>
<td>SST ToM Reasoning</td>
<td>9.26 (2.75)</td>
<td>2 to 14</td>
</tr>
<tr>
<td>SST ToM Spontaneous (% sample)</td>
<td>30.43</td>
<td></td>
</tr>
<tr>
<td>SST Comprehension</td>
<td>8.13 (1.90)</td>
<td>2 to 10</td>
</tr>
<tr>
<td>ANT Alerting effect (ms)</td>
<td>42.80 (23.69)</td>
<td>-12.03 to 92.59</td>
</tr>
<tr>
<td>ANT Orienting effect (ms)</td>
<td>47.13 (24.25)</td>
<td>-6.99 to 107.63</td>
</tr>
<tr>
<td>ANT Executive control (ms)</td>
<td>118.43 (37.82)</td>
<td>37.31 to 253.86</td>
</tr>
</tbody>
</table>
Table 2

Pearson’s correlation coefficients among the continuous predictor variables

<table>
<thead>
<tr>
<th></th>
<th>EI Managing Own Emotions</th>
<th>EI Managing Others’ Emotions</th>
<th>EI Utilizing Emotions</th>
<th>RMET Affective ToM</th>
<th>SST Cognitive ToM</th>
<th>ANT Alerting</th>
<th>ANT Orienting</th>
<th>ANT Executive Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI Perceiving Emotions</td>
<td>.309</td>
<td>.304</td>
<td>.230</td>
<td>.141</td>
<td>.143</td>
<td>-.060</td>
<td>-.038</td>
<td>-.056</td>
</tr>
<tr>
<td>EI Managing Own Emotions</td>
<td>.236</td>
<td>.235</td>
<td>-.020</td>
<td>-.001</td>
<td>.038</td>
<td>.202</td>
<td></td>
<td>-.045</td>
</tr>
<tr>
<td>EI Managing Others’ Emotions</td>
<td>.087</td>
<td>-.057</td>
<td>.069</td>
<td>.033</td>
<td>.117</td>
<td>.112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EI Utilizing Emotions</td>
<td>.022</td>
<td>.014</td>
<td>-.001</td>
<td>.107</td>
<td>.061</td>
<td>.063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMET Affective ToM</td>
<td></td>
<td></td>
<td>.244</td>
<td>.224</td>
<td>-.099</td>
<td>-.073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST Cognitive ToM</td>
<td></td>
<td></td>
<td></td>
<td>-.049</td>
<td>-.014</td>
<td>-.063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT Alerting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.041</td>
<td>.148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.091</td>
<td></td>
</tr>
</tbody>
</table>
Table 3

Full Detection Model parameters (n = 114)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>SE</th>
<th>Z value</th>
<th>p value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.251</td>
<td>0.160</td>
<td>1.567</td>
<td>.117</td>
<td>-0.079 to 0.582</td>
</tr>
<tr>
<td>EI Perceiving Emotion: Lie</td>
<td>0.174</td>
<td>0.081</td>
<td>2.144</td>
<td>.032</td>
<td>0.014 to 0.337*</td>
</tr>
<tr>
<td>EI Perceiving Emotions: Truth†</td>
<td>-0.091</td>
<td>0.072</td>
<td>-1.261</td>
<td>.207</td>
<td>-0.233 to 0.050</td>
</tr>
<tr>
<td>EI Managing Own Emotions: Lie</td>
<td>-0.012</td>
<td>0.079</td>
<td>-0.151</td>
<td>.880</td>
<td>-0.169 to 0.145</td>
</tr>
<tr>
<td>EI Managing Own Emotions: Truth†</td>
<td>0.092</td>
<td>0.069</td>
<td>1.325</td>
<td>.185</td>
<td>-0.044 to 0.228</td>
</tr>
<tr>
<td>EI Managing Others’ Emotions: Lie</td>
<td>-0.138</td>
<td>0.078</td>
<td>-1.793</td>
<td>.073</td>
<td>-0.293 to 0.014</td>
</tr>
<tr>
<td>EI Managing Others’ Emotions: Truth†</td>
<td>0.024</td>
<td>0.068</td>
<td>0.348</td>
<td>.727</td>
<td>-0.111 to 0.158</td>
</tr>
<tr>
<td>EI Utilizing Emotion: Lie</td>
<td>-0.022</td>
<td>0.075</td>
<td>-0.301</td>
<td>.764</td>
<td>-0.171 to 0.126</td>
</tr>
<tr>
<td>EI Utilizing Emotion: Truth</td>
<td>0.057</td>
<td>0.066</td>
<td>0.862</td>
<td>.389</td>
<td>-0.073 to 0.186</td>
</tr>
<tr>
<td>RMET Affective ToM: Lie†</td>
<td>-0.031</td>
<td>0.078</td>
<td>-0.394</td>
<td>.694</td>
<td>-0.185 to 0.123</td>
</tr>
<tr>
<td>RMET Affective ToM: Truth</td>
<td>-0.088</td>
<td>0.069</td>
<td>-1.277</td>
<td>.202</td>
<td>-0.223 to 0.047</td>
</tr>
<tr>
<td>SST Cognitive ToM: Lie</td>
<td>0.169</td>
<td>0.075</td>
<td>2.247</td>
<td>.025</td>
<td>0.021 to 0.319*</td>
</tr>
<tr>
<td>SST Cognitive ToM: Truth</td>
<td>0.035</td>
<td>0.066</td>
<td>0.531</td>
<td>.596</td>
<td>-0.094 to 0.163</td>
</tr>
<tr>
<td>ANT Alerting: Lie</td>
<td>-0.089</td>
<td>0.075</td>
<td>-1.180</td>
<td>.238</td>
<td>-0.239 to 0.060</td>
</tr>
<tr>
<td>ANT Alerting: Truth†</td>
<td>0.183</td>
<td>0.067</td>
<td>2.734</td>
<td>.006</td>
<td>0.052 to 0.315*</td>
</tr>
<tr>
<td>ANT Orienting: Lie</td>
<td>0.016</td>
<td>0.075</td>
<td>0.216</td>
<td>.829</td>
<td>-0.131 to 0.164</td>
</tr>
<tr>
<td>ANT Orienting: Truth</td>
<td>-0.042</td>
<td>0.066</td>
<td>-0.632</td>
<td>.527</td>
<td>-0.172 to 0.088</td>
</tr>
<tr>
<td>ANT Executive Control: Lie</td>
<td>0.026</td>
<td>0.074</td>
<td>0.350</td>
<td>.726</td>
<td>-0.121 to 0.173</td>
</tr>
<tr>
<td>ANT Executive Control: Truth</td>
<td>-0.034</td>
<td>0.065</td>
<td>-0.517</td>
<td>.605</td>
<td>-0.161 to 0.095</td>
</tr>
</tbody>
</table>

† The profile likelihood CI failed to converge. These were re-run using the Wald method. The pattern was the same and so the profile likelihood CI are reported here despite failure to converge.
Table 4

Final Detection Model parameters (n = 114)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>SE</th>
<th>Z value</th>
<th>p value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.233</td>
<td>0.044</td>
<td>5.335</td>
<td><.001</td>
<td>0.148 to 0.319</td>
</tr>
<tr>
<td>EI Perceiving Emotion:Lie</td>
<td>0.137</td>
<td>0.067</td>
<td>2.036</td>
<td>.042</td>
<td>0.005 to 0.270*</td>
</tr>
<tr>
<td>EI Perceiving Emotions:Truth</td>
<td>-0.057</td>
<td>0.065</td>
<td>-0.885</td>
<td>.376</td>
<td>-0.184 to 0.069</td>
</tr>
<tr>
<td>EI Managing Others’ Emotions:Lie</td>
<td>-0.116</td>
<td>0.067</td>
<td>-1.749</td>
<td>.080</td>
<td>-0.249 to 0.014</td>
</tr>
<tr>
<td>EI Managing Others’ Emotions:Truth</td>
<td>0.037</td>
<td>0.064</td>
<td>0.587</td>
<td>.558</td>
<td>-0.088 to 0.162</td>
</tr>
<tr>
<td>SST Cognitive ToM:Lie</td>
<td>0.142</td>
<td>0.064</td>
<td>2.204</td>
<td>.028</td>
<td>0.015 to 0.269*</td>
</tr>
<tr>
<td>SST Cognitive ToM:Truth</td>
<td>0.010</td>
<td>0.061</td>
<td>0.160</td>
<td>.873</td>
<td>-0.111 to 0.130</td>
</tr>
<tr>
<td>ANT Alerting:Lie</td>
<td>-0.079</td>
<td>0.064</td>
<td>-1.245</td>
<td>.213</td>
<td>-0.206 to 0.046</td>
</tr>
<tr>
<td>ANT Alerting:Truth</td>
<td>0.150</td>
<td>0.061</td>
<td>2.446</td>
<td>.014</td>
<td>0.030 to 0.271*</td>
</tr>
</tbody>
</table>
Deception Detection and Truth Detection Are Dependent on Different Cognitive and Emotional Traits: An Investigation of Emotional Intelligence, Theory of Mind, and Attention

Supplemental Information

Note: Most of the measures that were used in the study were already published and may be subject to copyright. For these, we have given the full reference information.
I. **Demographics questions**

What is your age in years? _______________ (leave blank if you prefer not to answer)

With what gender do you identify? (Please circle)
Male Female Prefer not to answer

What is your ethnicity? (Please circle.)
White Black Caribbean Black African Black Other
Indian Pakistani Bangladeshi Chinese
Mixed race (please also circle those that apply) Other
Prefer not to answer

What is your highest degree completed? (please circle)
GCSEs (or equivalent) A levels (or equivalent) Foundation degree
Vocational degree Level ______ (please indicate)
Bachelor’s degree PG Certificate PG Diploma
Master’s Doctorate Other ________________
Prefer not to answer

If you are currently a student, what is your level of study? (Please circle)
Level 4 Level 5 Level 6 PG Certificate PG Diploma
Master’s Doctorate Prefer not to answer

If you are currently a student, what is your main field of study? _______________ (leave blank if you prefer not to answer)

If you are not a student, what is your current occupation? (please respond even if you are not currently in paid employment, for example, if you are a volunteer or care for children or other family members) ________________________ (leave blank if you prefer not to answer)
Are you fluent in one or more languages other than English? (please circle)

Yes No Prefer not to answer

If you are fluent in any language besides English, please list these here (up to three):

Not applicable
Prefer not to answer
II. Truth and Deception Detection Videos Task

Before viewing the videos, participants were provided with the response sheet below, and asked to read the instructions. The section to be completed after viewing each clip was repeated for the 20 clips.

Video Response Sheet

You will be shown 20 short videos of people making public appeals for help with missing or murdered relatives. Some are truthful (they were not involved in the death or disappearance of their relative), and some are lying (they were involved in the death or disappearance of their relative). If there is more than one person in the video, please focus on the person who is speaking.

Before each video, the researcher will tell you briefly the background to the case. When you have watched the video, please check the box if you are familiar with the person featured in the clip, or with the outcome of the case. Then please decide if you think the person is lying or truthful, and circle your response.

Clip 1

Please check this box and do not complete the response sheet for this clip, if you are familiar with the person featured in the clip or the outcome of the case: ☐

Do you think the person in the clip is: Lying Truthful

The clips were presented in a randomized order for each participant. The brief backgrounds that were provided before each clip was shown are provided below. Names were only included in the brief background if they were mentioned in the video. Only as much information was provided as was necessary to make sense of the video.
Brief backgrounds:

Brian Cole
This man’s wife has been reported missing.

Diane Downs
This woman reported that a man shot her three children in her car.

George de la Cruz
This man’s wife has been reported missing. They are separated, and share custody of their daughter.

Gerard Baden-Clay
This man’s wife has been reported missing.

Lyle Herring
This man’s wife, Lesley, has been reported missing.

Matthew Gretz
This man’s wife, Kira, has been murdered

Munawar Toha
This man’s wife, Suriya, has been reported missing.

Penny Boudreau
This woman’s daughter, Karissa, has been reported missing. Karissa is 12 years old.

Stuart Hazell
This man’s step-granddaughter, Tia, has been reported missing. Tia is 12 years old.

Susan Smith
This woman reported that her two infant children had been abducted.

Bonnie Sweeten
It has been reported that this man’s ex-wife and daughter have been abducted.

Amy Henslee
This man’s wife has been reported missing.

Brendan Chobod
This woman’s son, who is 11 years old, has been reported missing.

Danny Pulliam
This woman’s husband has been reported missing.

Gwen Wright
This man’s wife has been reported missing
Joanna Yeates
This man’s daughter has been reported missing. She is 25 years old.

Jonathan Foster
This woman’s son, Jonathan, has been reported missing. Jonathan is 12 years old.

Jude Richmond
This man’s ex-wife, Jude, and their daughter, Millie, have been reported missing.

Phylicia Barnes
This man’s daughter has been reported missing. She is 16 years old.

Thor Wang
It has been reported that this woman’s infant son, Thor, has been abducted.

Summaries of the cases and videos
All the videos were sourced from well-established news websites based in the United Kingdom, the United States, Canada, and Australia.

Brian Cole
Heather Cole of Portland, Oregon, was reported missing by her husband, Brian Cole, on 10 March 2008, after she had not been seen for two days. Cole had a history of domestic violence and controlling behavior, and Heather was known to be trying to separate from him. Heather’s skeletal remains were found in a very remote area by a Forest Service worker on 30th June 2010 in a body bag, hidden under a log. Physical evidence indicated a violent struggle; Heather had fractured vertebrae, facial fractures, and broken ribs. Cole had previously taken a neighbor to the exact remote place in which Heather was found. The bag also contained items noted as missing from the couple’s apartment at the time of Heather’s disappearance (notably a towel rack), and Cole’s trousers. Cole was convicted of Heather’s murder on 28 June 2011, and sentenced to a minimum of 25 years. Cole spoke to the press about his missing wife within a few days of Heather’s disappearance, the video used is 12 seconds long.

Diane Downs
On May 19 1983, Diane Downs arrived at an Oregon hospital with her three young children in her car, all of whom had been shot. Downs had a superficial gunshot wound to her arm. She claimed that she had been car-jacked and a stranger had shot her and her children. One of her daughters died, her son was left paraplegic and her other daughter was permanently paralyzed on one side of her body. Witnesses saw her driving her car very slowly (5-7 mph) towards the hospital. Physical evidence, including blood spatter patterns and shells found in her home that had gone through the same gun casing as the bullets fired in to her children, did not support her story but implicated her in the attack and on 24 February 1984 she was arrested and charged with murder and attempted murder. Her surviving daughter testified against her at the trial, at which she pleaded not guilty. She was found guilty of all charges on 17 June 1984 and sentenced to life in prison plus 50 years. Downs made many press appearances in the months following the shooting of her children, talking about the incident; the video used was recorded within one month after her children were shot and is 35 seconds long.

George de la Cruz
De la Cruz’s estranged wife, Julie Ann Gonzalez, disappeared in Travis County, Texas, on 26 March 2010. Her body has never been found. Extensive cell phone evidence indicated that many connections made by Julie’s phone after her disappearance came from the vicinity of de la Cruz’s house, and also to specific locations (shops and houses) where de la Cruz was known to have been at the time. Further evidence also indicated that de la Cruz accessed Julie’s social media sites to make postings that she was running away to Colorado, and used her credit cards. A witness testified that de la Cruz had described how Julie had suffered a serious head injury at his house. De la Cruz was found guilty of murder 22 April 2015 and sentenced to a minimum of 30 years. De la Cruz made several press appearances after the disappearance of Julie, the video used was made within a few days and is 34 seconds long.

Gerard Baden-Clay
Allison Baden-Clay was reported missing by her husband, Gerard Baden-Clay, on 20th April 2012, in Brisbane. Police noted scratch marks on Baden-Clay’s face that morning, and later examination revealed scratches and cuts on his neck, armpit, chest, and hand. Allison’s badly decomposed body was found on 30th April 2012 on a creek bank. Baden-Clay had a long-term mistress, to whom he told that he could not afford a divorce, but that his marriage would be over by 1st July. He was deeply in debt and had taken out insurance and superannuation policies on Allison’s life, which he tried to claim the day that Allison’s body was found, but before it was formally identified. Allison’s blood and hair were found in the boot of the family’s car. Plant materials from six different species that were found on Allison’s head and arms matched plants growing in the carport area, where the car had been parked. Baden-Clay was convicted of murder on 15 July 2014 and given a life sentence. The conviction was appealed in August 2015, with Baden-Clay admitting hiding his wife’s body, but claiming that her death was accidental, and his conviction was substituted with manslaughter on 8 December 2015. In August 2016, the murder conviction was reinstated by the High Court. Baden-Clay spoke to the media once about his missing wife, when a TV crew intercepted him outside his house early on 24th April, the video used is 33 seconds long.

Lyle Herring
Lesley Herring was last seen on 7th February 2009 at her marital apartment in Los Angeles. Lesley’s workplace contacted her family to inform them when Lesley did not show up for work. Lyle Herring, Lesley’s husband, disappeared at the same time, and Lesley’s family could not contact either Lesley or Lyle, and reported Lesley missing. A week later, Herring was stopped in his car crossing the border from Mexico in to the US, he had substantially changed his appearance. Herring claimed that he and Lesley had planned a trip to Mexico, and that he had been in Mexico looking for her after the couple had rowed, although he had not reported her missing. After Lesley’s disappearance, there were several calls between her phone and Herring’s phone, although cell site analysis indicated that the calls were made with the two phones next to each other. Lesley’s car, handbag, wallet, keys, and phone were found in the boot of her car. A neighbor told police that he saw Herring, the night that Lesley disappeared, wheeling a dolly with a large rolled-up carpet on it, to an elevator. A cadaver dog produced positive hits for both Herring’s cars. Lesley’s body has never been found. Herring was convicted of murder April 2013. When Lesley had been missing for several weeks, police asked Herring to make a public appeal for help, the video used was 31 seconds long.

Matthew Gretz
Gretz’s wife, Kira Simonian, was found murdered in Minneapolis on 28 June 2007. She had suffered multiple stab wounds and blunt force trauma. Neighbors had reported hearing arguing on the night of the murder, and Gretz shouting ‘Do you love me’. Substantial DNA evidence on both the victim and on Matthew Gretz implicated him in the murder and he was arrested and
charged in September 2007. Half an hour after murdering Kira, Gretz had flown to New York from Minneapolis (where the couple lived), on a business trip. Police found Kira’s blood on his watch, hands, shirt, and on the suitcase that he took with him, and he had fresh cuts and bruises. Gretz’s DNA was found under Kira’s fingernails. After a judge ruled that the physical evidence was admissible, Matthew Gretz pleaded guilty to second-degree intentional murder on 2 June 2008. He was sentenced to 25 years.

Gretz attended a candlelit vigil for his wife on 12 July 2007 and spoke about his wife, the video is 34 seconds long.

Munawar Toha
Toha reported his wife, Suriya, missing, on 23 March 2010 in Coral Springs, Florida. Police searches discovered CCTV showing a man dumping a car in a lake behind Toha’s business, and leaving on a bicycle. Shortly afterward the car was dumped, Toha arrived at a friend’s house on a bicycle. Police found Suriya’s body in the boot of her own submerged car, wrapped in garbage bags, she had died of blunt force trauma to the head. Suriya’s blood was found in the family kitchen, on the doorway leading to the garage, and on the garage floor. Toha had already told police that he was home the whole day that Suriya went missing. Toha was convicted of murder in October 2014 and sentenced to life imprisonment. He is also serving a 30 year sentence for conspiracy to commit murder after trying to hire a hit man (an undercover police officer) to kill four witnesses who were going to testify for the prosecution in the trial for Suriya’s murder. One week after reporting his wife missing, Toha made a televised plea for her return, the video used is 30 seconds long.

Penny Boudreau
Boudreau reported her daughter, Karissa, missing on 27 January 2008 in Nova Scotia. Karissa’s frozen body was found on a riverbank on 9 February. Inconsistencies in her story placed suspicion on Boudreau, and an undercover operation was launched. On 11 June, Boudreau gave a detailed account and re-enactment to an undercover operator of how she strangled her daughter, in the belief that the operator was part of a crime syndicate and would be able to destroy police evidence against her. The account was secretly recorded. Boudreau was arrested and charged with first-degree murder on 14 June 2008, and made a full confession, admitting that she had strangled her daughter with a piece of twine in a bid to keep her boyfriend. On 30 January 2009 she pled guilty to second-degree murder and was sentenced life. Boudreau made a televised appeal for help in finding her daughter two days after Karissa was reported missing, the video is 67 seconds long.

Stuart Hazell
12 year old Tia Sharp was the granddaughter of Hazell’s partner, Christine Sharp. On 2nd August 2012, Tia stayed over at the home of Hazell and Christine, while Christine went out to work. On 3rd August, Tia was reported missing, with Hazell claiming that Tia had left the home at midday. Tia’s decomposing body was found in the attic of Hazell and Christine’s house on 10th August, and Hazell was arrested and then charged with murder. Hazell initially claimed that Tia had fallen down the stairs and that he had hidden her body in panic, but blood and DNA evidence indicated a serious sexual assault had occurred, and Hazell had taken sexually explicit photographs of Tia around the time of her death. On the fifth day of his trial, on 13 May 2013, Hazell changed his plea from not guilty to guilty, but refused to reveal how Tia had died. He was sentenced to a minimum of 38 years. On 9th August, Hazell was interviewed by a TV channel about Tia’s disappearance, the video used was 24 seconds long.

Susan Smith
On 25th October 1994, Smith reported to police in South Carolina that she had been car-jacked at an intersection, and the perpetrator had driven away with her two young sons, Michael and Alex, in the car. Police were suspicious of Smith’s account almost immediately, as the red light at the intersection at which she claimed to have stopped and been carjacked, was only triggered if there was a vehicle on the cross-street, but Smith claimed that there were no other vehicles present and therefore no witnesses to the crime. Nine days after Michael and Alex had been reported missing, on November 3rd, Smith confessed that she had rolled her car in to a lake with her children inside it. Police had already searched the lake, but Smith was able to tell investigators that the car was much further out in the lake than they had expected, and gave them the exact distance it had travelled before it sank. The car with the bodies of Michael and Alex in it was found where Smith had indicated they would be, and post mortems revealed that the boys had drowned. At trial, Smith admitted killing her children, and on 22nd July 1995, she was convicted of murder and was sentenced to life. Smith publicly appealed for help several times in the week following the disappearance of her children, the video is used is 25 seconds long.

Bonnie Sweeten case
On 26 May 2009, Sweeten made seven 911 calls to report that she and her nine year old daughter had been carjacked and kidnapped by two men in Bucks County. She also left a voicemail for her ex-husband, Anthony Rakoczy, saying that she feared for her life. It was quickly found that Sweeten had made the 911 calls 25 miles away in Philadelphia, and had used a colleague’s identity documents to book flights to Orlando. Sweeten was found and arrested in Disneyworld, Florida, and had constructed the hoax in order to hide her whereabouts from family members and law enforcement, as part of a much larger fraud. In January 2012 Sweeten was sentenced to eight years. Rakoczy was interviewed the day after Sweeten’s alleged abduction on live TV about the disappearance of his ex-wife and daughter, the video used was Rakoczy’s truthful interview, and is 75 seconds long.

Amy Henslee case
On January 24th 2011, Amy Henslee was reported missing by her husband, James Henslee, in Van Buren County, Michigan. The bodies of Amy and Tonya Howarth were found on 27th January in a shallow grave next to the trailer of Junior Lee Beebe Jr. Tonya was Beebe’s girlfriend. Both women had died from two gunshot wounds, and substantial amounts of blood from both women were found in Beebe’s trailer. Beebe claimed that he had been having an affair with Amy, and that Tonya had found him and Amy in his trailer, Tonya shot Amy in a scuffle, and he then wrestled the gun from Tonya and shot her. The only DNA found on the murder weapon was Beebe’s, and Tonya had been shot in the back of the head. On 9th August 2011, Beebe was convicted of the murders of Amy Henslee and Tonya Howarth. The day after Amy was reported missing, James Henslee spoke to the press about his missing wife, the video used was Henslee’s truthful interview, and was 48 seconds long.

Brendan Chobod case
11 year old Brendan Chobod was reported missing by his mother, on 11 September 2009 in Isabella County, Michigan. He had last been seen asleep at home at 8am that morning. Brendan was found on 12th September at an amusement park in Sandusky, Ohio with 21 year old Andrew Smith, a family friend. Smith pled guilty to kidnapping on 18th November 2009. Brendan’s mother appealed publicly for help the day after he was reported missing, the video used is this truthful appeal and is 29 seconds long.

Danny Pulliam case
Danny Pulliam was reported missing on 29th December 2010 in Fairhope, Alabama, after he left a poker tournament. Pulliam was found alive and well in California on 18th January 2011 and described as an adult run away. No charges were brought. Pulliam’s family made several public appeals for help in the two weeks that he was missing, believing that he had been abducted. The video used is Pulliam’s wife, and this truthful appeal is 18 seconds long.

Gwen Wright case
Gwen Wright was reported missing from Wellington, Ohio on 7th October 2010 by her husband, Dwayne Wright, who had last heard from her the previous night. ATM records showed that Gwen withdrew $500 after her disappearance, and on 10th October, Gwen’s car was found with her purse and cell phone inside. The missing person alert was cancelled on 13th October after it was confirmed that Gwen had spoken with several people and was in no immediate distress, although her behavior was erratic. Gwen was found unresponsive and face-down on a bike path in Chillicothe on 14th October, but after medical examination was released to the care of her relatives. Dwayne Wright appealed for help to find his wife in the days after she went missing, the video used is this truthful appeal and 20 seconds long.

Joanna Yeates case
25 year old Joanna Yeates disappeared from Bristol on 17th December 2010 after a night out with colleagues. Her body was found on 25th December in Somerset, she had been strangled and had 43 separate injuries to her head, neck, torso, and arms. On 22nd January 2011, Vincent Tabak, a neighbor of Joanna’s, was charged with her murder. Extensive DNA evidence found on Joanna linked Tabak with her death. On 5th May 2011, Tabak pleaded guilty to manslaughter, but denied murder. He was found guilty of murder on 28th October 2011, and sentenced to a minimum of 20 years. In the week after Joanna was reported missing, her father appealed for help in finding his daughter, the video used is this truthful appeal and is 54 seconds long.

Jonathan Foster case
12 year old Jonathan Foster was reported missing in Houston on 24th December 2010 by his mother, Angela Davis, who had been at work. His burned remains were found on 28th December in a ditch. CCTV showed Jonathan’s body being taken to the ditch by a woman driving a truck on the evening of 24th December. Police identified the woman as Mona Yvette Nelson, who was known to the family, and found evidence that Jonathan’s body had been burned at her apartment with a welding tool. Nelson admitted dumping Jonathan’s burned body in a ditch, but denied murder. She was convicted of murder on 27th August 2103 and sentenced to life without parole. Jonathan’s mother, Angela Davis, appealed for help in the days after he was reported missing, and the video used is this truthful appeal and is 25 seconds long.

Jude and Millie Richmond case
Jude Richmond, and her 9 year old daughter Millie, were last seen on 15th March 2009 at their home in Gloucestershire, and were reported missing the following day by the family cleaner. The family car was at the house, as was Millie’s mobility scooter, without which she could not walk far. The bodies of Jude and Mille were found in a lake 50 yards from the family home on 18th March 2009. Evidence emerged that Jude was in a vulnerable and confused mental state at the time of her death, and was struggling to cope with her disabled daughter. Investigators ruled out foul play or the involvement of any other party in the deaths. The coroner at the inquest into their deaths suggested that Jude may have accidentally killed Millie, and then committed suicide. Jude’s ex-partner and Millie’s father, Neil Whitehead, spoke to reporters about the missing pair before the bodies were found, the video used is this truthful interview and is 23 seconds long.
Phylicia Barnes case
16 year old Phylicia Barnes, from North Carolina, was reported missing when visiting her sister in Baltimore, Maryland on 28th December 2010. Her body was found in a river on 20th April 2011, she had been asphyxiated. On 25th April 2012, her sister’s ex-boyfriend, Michael Johnson, who was the last known person to see Phylicia alive, was charged with murder and he was convicted on 6th February 2013. After the credibility of a prosecution witness was questioned by the defense team, a re-trial was ordered, but on 20th January 2015 all charges against Johnson were dropped due to insufficient evidence. In April 2017, judges ruled that Johnson can be re-tried for Phylicia’s murder. In the days following Phylicia’s disappearance, her father, Russell Barnes, publicly appealed for help in finding his daughter, this truthful appeal was used, and is 15 seconds long.

Thor Wang case
On 14th February 2009, Mia Danielsson was granted sole custody of her son, 15 month old Thor Wang, in the US. The same day, Thor’s father, Andrew Wang, kidnapped Thor. Thor was found with his father in Guatemala on 17th April 2009. Following Thor’s disappearance, Mia made several televised appeals for help in finding her missing son, the truthful appeal used here was made three weeks after Thor’s disappearance, and is 48 seconds long.
Deception detection and truth detection

References for published measures used in the study are as follows:

