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Abstract.  This research investigates methods for evolving 

swarm communication in a simulated colony of ants using 

pheromone when foriaging for food. This research implemented 

neuroevolution and obtained the capability to learn pheromone 

communication autonomously. Building on previous literature 

on pheromone communication, this research applies evolution to 

adjust the topology and weights of an artificial neural network 

which controls the ant behaviour. Comparison of performance is 

made between a hard-coded benchmark algorithm, a fixed 

topology ANN and neuroevolution of the ANN topology and 

weights. The resulting neuroevolution produced a neural 

network which was successfully evolved to achieve the task 

objective, to collect food and return it to the nest. 12 

1 INTRODUCTION 

This research has developed a model of ant colony swarm 

intelligence behaviour. The novel aspect is that behaviour of 

pheromone navigation was not hard coded, as in most 

implementations, but has evolved using artificial neural 

networks (ANNs) and an implementation of neurovevolution. 

Compared to previous research which failed to evolve standard 

and fixed topology ANNs for ant behaviour (Collins & 

Jefferson, 1990a), this research produces successful evolution 

and applies a more comprehensive neuroevolution methodology 

including complexification and augmentation of ANN topology 

and weights, as described by NEAT (Stanley, 2004). 

Inspired by biological ants, this research aims to provide 

insights to advance understanding of how pheromone 

communication evolved in biological organisms. Application of 

neuroevolutionary computational modelling provides a useful 

analogy to how brains may have evolved to produce biological 

organism behaviours. 

There are many long standing open questions regarding the 

evolution of altruism, related to how any why the evolution of 

cooperation emerged among closely related individuals 

[Hamilton 1964]. Worker ants (Formicidae) are a perfect 

example of altruism, as they collect food for the good of the 

swarm but they get no individual rewards. This computer 

simulation method can provide new insights into altruism 

because each colony is only assessed by its fitness as a whole, 

not that of individual ants. 

Pheromone trails can be seen as social memory or swarm 

memory used by all agents in the colony. The problem is called 

central place food foraging which is an optimisation problem. 
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The aim of foriaging is to collect as much food as possible and 

return it to the nest. An ant’s food collection consists of two 

phases: the search for food and retrieval of food back to the nest.  

In this respect the problem relates to the new field of 

morphogenetic engineering (ME). In this task, the core challenge 

posed by ME is a reverse engineering one: How can the ants’ 

micro-rules be inferred from the system’s macro-objectives? 

(Doursat et al., 2013). In this case the macro objective is to 

optimise fitness of the swarm by using swarm communication, 

but the micro rules for each ant to achieve that were not provided 

in this system and needed to evolve autonomously with no 

prefabricated design. 

2 RELATED WORK  

Literature on pheromone communication is described by various 

key words: ant evolution simulation pheromone, central-place 

foraging algorithm (CPFA), pheromone recruitment (Letendre 

and Moses, 2013). 

The core interest of this work is how ant pheromone 

communication can be evolved in a computational model. There 

have been some interesting works attempting to evolve ant 

pheromone communication, and others evolving swarm 

communication in general which is related closely enough. 

A milestone early attempt to use a computer simulation to 

evolve ant foraging strategies using pheromones which resemble 

behaviours of biological ants was AntFarm (Collins & Jefferson, 

1990a). AntFarm implemented an early form of neuroevolution, 

which was used to evolve the ANNs which learn behaviour for 

effective ant pheromone communication (Collins & Jefferson, 

1990b). Neuroevolution methods in AntFarm evolved both the 

ANN connectivity pattern (topology) and weights of the ANN 

which were under genetic control in a genotype. Limitations 

were that: (1) AntFarm did not successful evolve any 

cooperative foraging which was the main objective. (2) A basic, 

conventional ANN was used, when compared to the wider range 

of operators, sigmoids and activation functions with 

complexification as used in more recent neuroevolution models 

such as NEAT (Stanley, 2004). (3) The number of neurons and 

connections were not under genetic control.  

The first research to evolve Ant pheromone foraging was by 

Panait and Luke (2004). 

More recently, Beem (2017) attempted to use NEAT to 

evolve the controller for individual agents in a swarm. However 

the methods failed to produce any ability for agents to find food, 

or communicate, or exhibit any swarm intelligence whatsoever. 

The most advanced behaviour that his agents ended by evolving 

was to walk in circles. Perhaps that was due to the coordinate 

system used, or a lack of random or sin wave inputs. The inputs 

to the NEAT ant controller included the ant’s own position; the 



intensity of pheromones at its location; whether or not the ant is 

carrying food at a given moment and the distance to the nearest 

food from two different points on the ant (for triangulation). The 

NEAT outputs are the agent’s forward movement speed, its 

steering direction and the intensity of the pheromones it leaves 

behind. All agents within a swarm have the same neural network 

as controller.  

Yong and Miikkulainen (2009) found that for cooperative 

tasks such as chase and evade, evolving several autonomous, 

cooperating neural networks to control a team of agents is more 

efficient and robust than evolving a single centralized controller. 

This potentially may apply in ants where two distinct roles are 

required – searching for food and returning to the nest. 

Other attempts to evolve Swarm Intelligence using NEAT 

have failed, for example Chang & Worlanyo (2015) didn’t see 

any communication being evolved. In other work, to some extent 

evolving swarm communication has succeeded (Floreano et al., 

2007, Marocco and Nolfi., 2003, Yong and Miikkulainen., 

2009). Rawal et al. (2012) successfully evolved cooperative 

communication between a group of predators who can only catch 

prey by communicating information codes to each other. A 

related work has evolved ants nest site localisation (Marshall, 

2003). 

Ant algorithms are generally most widely known through the 

wide literature on optimisation problems with ant colony (ACO) 

by Dorigo et al., (2006). Differing from this research, ACO 

algorithms conventionally must be hard coded by a designer and 

not evolved automatically.  

Letendre and Moses (2013) used genetic algorithms to show 

that ant foriaging is improved in random food distributions and 

using both pheromone and site fidelity foriaging strategies. 

However their GAs were used only to adjust a set of parameters 

affecting behaviour, not to learn the behaviours themselves, 

which were hard-coded and pre-existing. 

3 STATE OF OUTSTANDING PROBLEMS  

There are some state of art current outstanding problems 

specifically within the evolving pheromone communication, 

some of which are addressed in this work. 

Collins & Jefferson (1990a) suggested future work should 

involve: (1) a systematic study of the effect of food distribution 

on the evolution of foraging strategies, testing the model of 

Johnson et al. (1987). (2) evolution of foraging strategies that are 

strongly affected by competition to see if competitor colonies 

sharing a single environment will interfere with each others 

strategies, disrupting communication by overwriting pheromone 

or misleading trails – which is related to Anti-pheromone which 

was later separately used by Panait and Luke (2004). (3) 

Investigate previous suggestions that pheromone evolution 

requires incremental changes to vary the environment, slowly 

making foraging more difficult over time. 

Future work can also focus on the limitations of Panait and 

Luke (2004) which was suggested as future work. (1) When 

using multiple food sources which decay when eaten, this results 

in a dynamic changing environment and this makes pheromone 

evaporation more important. (2) How does pheromone 

navigation change with introduction of predators.  (3) Future 

work can investigate ants which can produce more than 2 

pheromones, so the ants can also learn complex tours with 

multiple way-points and self-intersecting paths.  

4 SYSTEM COMPONENTS  

There are five components in the system which occur when 

an ant makes a move.  

 

1. Pre-computed Inputs (ant sensors). 

Ants have 13 input sensors: (1, 2) the location within the 9 

adjacent cells (Moore neighbourhood) of the highest pheromone, 

(3, 4) the location within Moore neighbourhood which is closest 

to the nest, given by a ‘compass sensor’. (5, 6) location within 

Moore neighbourhood of food. (7, 8) the direction of the ant’s 

previous move, (9, 10) a direction picked at random, (11) a 

Boolean indicating whether the ant is currently carrying food, 

(12) a random number, (13) a fixed value of 1 (Bias). These are 

referred to as the pre-computed inputs and they remain the same 

even when the controller is changed (BM1, ANNs, NEAT). 

Having a compass avoids the requirement to use two different 

pheromones. Compass is calculated by Pythagoras theorem 

using the x and y differences between ant and nest. In a grid 

system following the compass does not produce a direct path, it 

results in diagonal motion followed by perpendicular motion.  

All of the 5 direction pre-computed inputs are represented in a 

consistent manner using two variables for x and y. These 

represent the change required in the ant’s current x and y 

coordinates. These variables can be positive, negative or neutral. 

If both are neutral the ant would stand still (which would never 

be beneficial when foraging). If both were negative, the ant 

would move diagonally towards the origin (NW). With this 

method, the two variables can encode any direction within the 9 

squares of the ant’s Moore neighbourhood. If the ant chooses to 

follow the compass, it would then ignore the pheromone and 

vice versa. 

 

2. Controller. 

The controller is a ‘black box’ brain which decides the animal 

behaviour at timestep t, based on the pre-computed inputs from 

the ant’s sensors. The experiments were repeated using different 

controllers: a hard-coded benchmark (BM1), a fixed topology 

neural network and neuroevolution by adjusting the topology 

and weights of an ANN. 

 

3. Outputs. 

The resulting output of the controller determines the direction 

in which the ant moves.  

 

4. Post move local updates. 

After each ant has moved, a number of post-move local 

updates are automatically applied. (1) If the ant is now standing 

on food and isn’t carrying any, it automatically picks food up. 

(2) If the ant is carrying food, pheromone is deposited with 

strength inversely proportional to the time since collection. (3) If 

an ant is already carrying food and is now standing on a nest, it 

automatically drops the food. This representation realistically 

assumes that biological ants already could pick up and drop food 

before they evolved pheromone communication. These tasks are 

regarded as automatic responses which we assume have been 

learnt previously. 

 

5. Global updates 

After a full iteration, when all ants have finished making a 

move, a global update is triggered in which all pheromone is 

evaporated (decremented). A number of different evaporation 



rates including decrementing and various percentage reductions 

were tested to identify how evaporation rate affects the ability to 

evolve navigation controllers. 

5 THE MACHINE LEARNING TASK 

The given inputs and expected outputs were kept strictly 

equal for all tested controllers. Therefore here we can formally 

define the machine learning task based on the relationship 

between inputs and outputs of the controller. This is critical step 

because small changes to the representations of input and output 

can make big changes to the difficulty of the task for the 

controller to learn. 

 

Inputs: 

 

In total the task has 13 inputs: 10 (5 pairs of) input direction 

variables, 1 boolean input, 1 random number input and 1 fixed 

value (Bias). There are 2 outputs: x and y. 

Of the 13 inputs 10 inputs are positional change inputs. These 

are in 5 pairs of x and y, relative to ants current position, to reach 

the optimal square within Moore neighbourhood for the 5 pre-

computed inputs: food, pheromone, compass, same-move or 

random-move. These all have three possible values -1,0,1.  

 

Closestnestx 
Closestnesty 
Foodherex 
Foodherey 
Highestpheromonex 
Highestpheromoney 
rand_x 
rand_y 
same_x 
same_y 

 
For food and pheromone, 0,0 only occurs when none is found, 

which means that there is no need for having separate Booleans 

indicating food and pheromone presence. For compass, 0,0 only 

occurs when standing on the nest (in which case compass would 

not be useful as the ant would not be carrying food because it 

would have been dropped automatically). 

There is one random number input called r. This is 

independent of random direction inputs. This is required so that 

ants can randomly determine when to move randomly. 

 
r 
 
A Boolean is included to represent whether food is currently 

being carried. This is an important flag because it defines one of 

two current states: (1) searching for food, or (2) bringing food 

back to nest. This information is not available in other inputs. 

 

carryingfood 
 

 
There are only two outputs. They represent the relative step 

the ant will take on this timestep. They can be a value from the 

set {-1,0,1}. Therefore the output of the controller purely 

determines the position of the ant’s next move, which has 32 

options, one for each square in the ant’s Moore neighbourhood. 

 

output_x 
output_y 

6 BENCHMARK ALGORITHM BM1 

The developed system included designing a custom 

developed hard-coded benchmark algorithm (BM1) for 

pheromone based food foriaging behaviour, shown as 

pseudocode in Fig. 1. The BM1 algorithm was used in this 

research as a comparison or gold standard to assess the 

performance of the fixed topology and evolving ANN 

algorithms. 

The benchmark BM1 does produce efficient foriaging 

behaviour and also demonstrates that the pre-computed inputs 

provide all required information to complete the foriaging task. 

The benchmark performance was measured and used to evaluate 

the performance of ANN driven behaviour controllers which 

later evolved. The pseudocode gives a description of what 

happens for each ant to decide which direction to move in at 

each timestep. This implements two modes: searching for food, 

and retrieving food based on the carryingfood Boolean flag.  

 

if (carryingfood){ 
  //follow compass to nest 
}else if (food in neighbourhood){ 
  //step onto the food 
}else if (pheromone in neighbourhood){ 
  //step onto strongest pheromone 
}else if (rand%100<90){ 
  //continue previous direction 
}else{ 
  //use a completely random direction. 
} 
 

Fig. 1. Pseudocode for the Benchmark Algorithm (BM1). 

 

In the BM1 benchmark, when a random direction has been 

chosen, on consecutive timesteps, the direction has 90% chance 

of remaining constant. This means that ants travel largely in 

straight lines, broken by abrupt changes on 10% of steps. This 

causes the ants to more effectively spread out and cover the 

whole grid more quickly. The main benefit is that ants then have 

a much higher chance of running into an existing pheromone 

trail. This outperforms total random movement, whereby ants 

often retrace their steps in consecutive turns which results in a 

lack of general directed movements. Also the random direction 

is chosen from an 8-square Moore neighbourhood – so that 

standing still is never chosen as it would have no benefit. 

It can be seen that efficient pheromone communication 

(BM1) can be captured in this simple pseudocode which consists 

of only 5 IF statements, plus the defined actions to perform 

within each condition. The machine learning task is to replicate 

the behaviour of these 5 IF statements and associate the correct 

actions with each case, by using only the 12 given inputs. This 

summarises the difficulty of the learning task. If the machine 

learning fails, it must be because the IF statement structure was 

too complex to learn, or the actions were not associated with the 



correct conditions. The BM1 already demonstrates that the given 

12 inputs are satisfactorily informative to complete the foraging 

task.  

In the event of machine learning failure, that could be 

investigated in terms of machine learning complexity, rather than 

anything specifically about the foriaging task, because it could 

be assumed that other machine learning tasks with the same level 

of complexity would equally fail to be learnt. 

7 RESULTS OF BM1 IN FIXED LEVELS 

For a comparison between controllers (BM1, ANN, 

Neuroevolution), one fixed level was used. The obstacles and 

food were located in the same places. That ensured that each 

controller was subject to the exact same challenge. The fixed 

level is shown in Fig. 2.  

 

 
Fig. 2. This shows the layout of the fixed level used for 

evaluating and comparing a variety of controllers. 

 

When the ant colony was controlled by the BM1 algorithm 

and foriaged within this fixed layout level (Fig. 2.), the ant 

colony makes very consistent progress every time it is run (Fig. 

3.). The small variations are due to the random movement of 

ants, taking slightly different times to first discover food sources 

before they are subsequently attended by large recruited swarms. 

In total the fixed level happens to have 6630 foods. On a 

typical run in this fixed level, as those shown on the graph Fig. 

3, BM1 collected the first food after 106 timesteps. At 2500 

timesteps, 3143 foods were collected. By the time the run was 

halted at the 5000th timestep, food was still being actively 

collected, in total 4852 foods had been collected, so 1778 foods 

remained uncollected. 

The behaviour of the BM1 can be further analysed by looking 

at Fig 4. which shows how often each direction was chosen. 

Standing still is the rarest move and diagonal bottom-right to 

top-right the most frequent. Also Fig. 5. shows how often each 

of the 5 IF statements from the pseudocode (Fig. 1) were 

triggered. Continuing in the same direction is the most frequent 

action and stepping onto food is the rarest action. 

8 FIXED NEURAL NETWORK TRAINING 

Using a typical run of BM1 in a fixed level, as in Fig. 1. a 

training set for an ANN was produced.  

 

 
Fig. 3. Consistent results of BM1 run 8 times on a fixed level. 

  
Fig. 4 How often each Moore neighbourhood direction was 

chosen. 

 
Fig. 5. How many times BM1 triggered each IF statement 

from the pseudocode. 

 

This was achieved by writing to file all of the inputs and the 

resulting outputs for 10 ants over a 5000 timestep run. This data 

set contained 50,000 instances each containing the full set of 13 

inputs and 2 outputs. 

The training set was then used as the training set for a neural 

network. The aim was to identify whether an ANN could use 

backpropagation to learn the relationships between the inputs 

and the output produced by BM1. A 90% split was used to split 

into a 45,000 instance training set and an unseen 5,000 instance 

test data. 

In order to use a single ANN to produce two outputs: x and y 

together, outpux_x and output_y were combined into a single 

output class with 9 values A-I (Fig 6). In total the ANN had 12 

inputs and 9 output nodes, one for each class. With no hidden 

layers, the network classified 87.5% correctly. With one hidden 

layer of 10 nodes the MLP correctly classified 90.4% of test 

data. With two hidden layers of 10 nodes each (Fig. 6), accuracy 

improved to 92.3%. Training time increased with hidden layers.  

It is not known if this trained ANN would in fact perform 

well as a controller for the ant simulation, or not. The 

misclassified instances could include important classes. It is hard 

to identify which situations the network failed in and if those 

would be critical or not to foriaging behaviour.  



 

 
Fig. 6. The fixed topology ANN classified the optimal ant 

direction 92.3% of the time. 

 

In order to clarify further, a training set was created with all 

the same inputs, but with 5 possible output class values, 

representing the 5 IF statements used in the pseudocode (Fig. 1). 

There are 5 pairs of directional inputs and the purpose of the 5 IF 

statements is to choose which of those 5 directions to follow (see 

pseudocode in Fig. 1). This test can clearly identify whether the 

5 IF statements were correctly learnt, without having to also 

learn the correct actions to take within each IF statement. With 

one hidden layer, a fixed ANN was created and trained (Fig. 7). 

The ANN reliably identified the correct one of five IF statements 

99.98% correctly classified. Only 1 of the 5000 was incorrectly 

classified. 

 

 
Fig. 7. Learning the 5 IF statement classes accuracy 99.98%. 

 

To summarise this fixed ANN training section, in this 

approach BM1 output data was used to train an ANN by back 

propagation. This step was useful to demonstrate that an ANN is 

capable of performing this task when properly trained, so 

therefore the task should not be overly complex for an evolving 

neural network. 

This result suggests that a trained fixed topology ANN can 

perfectly learn to recognise which of the 5 IF statements should 

be triggered given the inputs. A harder learning task is to also 

determine which actions to take when each of the 5 IF statements 

are triggered, the ANN achieved this with 92.3% accuracy. 

It is recognised that this approach differs from biological ants 

with natural selection, which have no pre-existing data to train 

the ants. In evolution, skills must be evolved without training or 

guidance, not towards a particular aim or objective. Therefore, 

the next section focusses on unsupervised evolution. 

9 EVOLVING ANN CONTROLLERS 

Neuroevolution was applied to evolve neural networks which 

were then applied as the controller for ants. All ants in a colony 

had the same controller at each generation. But between 

generations, the controller was subject to genetic change, by 

modifying the ANN both in terms of the weights and the 

topological structure, including the number and location of 

connections.  

Initially, the ANNs were set blank, with no hidden layer 

nodes. The additional nodes are added by evolution over time.  

The fitness function was set to 1 point for each food picked 

up, 50 points for each food returned to the nest. 

A comprehensive set of tests was done with 25 ants per 

colony, left to run for 900 timesteps. The ANN controllers were 

subject to neuroevolution in populations of size 15 organisms 

over 100 generations and this was repeated 10 times. Afterwards 

a further 5 repetitions of 100 generations was completed, this 

time with populations of 150 organisms which is a more 

conventional population size for neuroevolutionary algorithms. 

In all runs food collection was learnt almost perfectly. By the 

10th generation organisms often had peaked at a fitness of 25, 

meaning that every single ant successfully collected a food. In 

most experiments, the ANNs started to learn to return the food to 

the nest, which begun producing fitness of 62 in generation 13. 

At generation 42 the fitness was 2049, so the majority of ants 

were returning multiple foods to the nest. This cannot be 

explained by random movement alone which does not result in 

any food being returned. In the third run, the highest fitness 

reached 5059, meaning that 109 foods were collected, of which 

99 foods were returned to the nest in only 900 timesteps, a 

highly efficient result, that means every ant on average collected 

food and returned it to the nest 4 times, outperforming BM1.  

Visualisation of the evolved ANN structure (Fig. 8) shows 

that it had an additional 7 nodes had evolved, and 18 new 

connections, plus all of the weights throughout had evolved to 

optimal values.  

It is hard to visualise why this ANN works so well because 

ANNs are a black box solution, yet some evolved nodes seem to 

make sense. The node in the bottom right was added by 

neuroevolution. It has connections to the Boolean flag 

pherom_here (input 14) and the pheromone x flag (input 5). 



 
Fig. 8. The evolved ANN which has fitness 5059 and 

outperformed the benchmark algorithm. Red nodes were added 

by the neuroevolutionary algorithm, the two yellow nodes are 

outputs, one for the x movement, one for y movement. The green 

squares are the 14 ANN inputs. 

 

That could make sense that the Boolean flag pherom_here 

could trigger the hidden neuron to send pheromone x 

information to the x output 1 only when present. Another 

observation is that most evolved nodes that connect to the x 

output do have connections coming from x inputs and the same 

is true for evolved nodes connected to the y output. 

Subsequently the same experiment was repeated four times 

with a larger population size of 150. The runs produced fitnesses 

of 8533, 6178, 6083 and 2152. When controlled by the ANN 

with highest fitness 8533 the ants had collected 183 foods and 

returned 168 of those to the nest. Given the size of food clusters 

on the fixed map are over 1000 each, the score could be achieved 

by discovering a single food cluster. 

For comparison, the BM1 was run 100 times for 900 time 

steps with 25 ants and the colonies had returned to the nest a 

range of food from 2 to 107, with an average of 60 foods. A 

possible reason why neuroevolution outperformed BM1 could be 

that it was overfitted to the test level layout. 

Comparisons using purely random movement with 25 ants 

over 900 timesteps showed that a maximum of only 1 food was 

collected by ants, and no food was ever returned to the nest.  

10 ALTERNATIVE SCENARIOS 

A scenario was tested in which there was no compass and 1 

pheromone. The compass input was experimentally removed, to 

identify whether a benchmark could be programmed without a 

‘nest compass’ a sensor to nest direction, using only one 

pheromone. The algorithm would not correctly operate, because 

after finding the food there was no way for the ants to find a way 

back to the nest, so ants would move randomly, leaving 

pheromone all over the place attracting other ants in the wrong 

directions (fig. 9). 

 
Fig. 9. The BM1 algorithm running without a compass sensor 

– ants have no way of finding the nest once food is discovered 

and pheromone is scattered randomly. 

 

Food distance from nest has various effects. With closer food, 

the pheromone trail will be stronger and it takes less time to get 

back to the nest. But longer trails have greater chance of other 

ants walking into them by accident, so further food may attract 

more ants that way. This is shown in Fig. 10. Two foods were 

discovered: a small food in the upper right is favoured compared 

to a larger food in the bottom left, because it is closer, ther 

pheromone is stronger and all ants abandon the larger food until 

the pheromone evaporates and knowledge of it’s location is lost 

to the swarm. In Fig. 11b, the same affect is shown. Ants 

recruited to the bottom two foods only collected food once and 

when they reached the nest, they chose to follow the top food 

because that pheromone was stronger and the top food quickly 

depleted. 

 

 
Fig. 10. A large food supply (lower left) is abandoned and 

forgotten in favour of a small food (upper right), because it is 

closer to the nest, causing a stronger pheromone trail. 

 



Each decision that an ant makes can be subject to random 

probability so that ants are always capable of doing something 

unpredictable at any time. The effect of introducing a probability 

of random decisions is shown between Figs 11a and 11b.  

 

 
Fig. 11. (a) With 0% chance of random behaviour at each 

timestep. White: ants. Red: food source. Blue-black: pheromone 

strength. Yellow: obstacle. Central point: nest. (b) With 70% 

chance of random behaviour at each timestep. 

11 COMMON PROBLEMS ENCOUNTERED 

One problem with using a compass to return to the nest is that 

if obstacles block the route in a ‘v’ shape, the ant never get past. 

In Fig. 12 this has occurred and long after the bottom two food 

sources are completed, the blocked food source hasn’t been 

exploited yet. If two pheromones were used this may be avoided. 

 

 
Fig. 12. Using one pheromone with compass, ants often get 

stuck behind a ‘v’ shaped yellow obstacle. 

12 PHEROMONE STRENGTH DECREMENT 

Hill climbing strategy has two main requirements. When an 

ant discovers a pheromone trail, there are usually two directions 

it could be followed. The ant should choose which direction 

using a hill climbing strategy to more easily find the food. That 

assumes that the strongest end of the trail will lead to the food. 

However, the whole trail evaporates over time, so the strongest 

end of each pheromone trail will naturally tend to be the end 

nearest the nest because the trail near the food has had a longer 

time to evaporate. Therefore, if hill climbing is to work, (1) the 

pheromone strength deposited by ants must decrease on 

consecutive squares as they get further from the food. Also (2) 

the evaporation rate must be slower than the reduction in 

strength left by ants on consecutive squares. This can be 

instructed either automatically, or it could be part of the ant’s 

behaviour controller which is required to evolve. That would 

increase the search space for the ANN and would require two 

additional inputs (1) the number of steps taken since food and (2) 

the strength of pheromone already on this square from other ants 

and an output for the pheromone strength to deposit. 

Problems can occur when ants are laying a pheromone trail 

and they walk across a separate pre-existing pheromone trail of a 

different strength (Fig. 13). In this case, ants should not be able 

to add to existing pheromone, up to a maximum limit on each 

square. They should also not be able to cause existing 

pheromone to reduce by overwriting pheromone left by other 

ants with a lower value. This causes problems when two paths 

from two food sources combine into one, and the ants from 

either food source will have taken a different number of steps 

and laying different strengths of pheromone. (Fig. 13.) The 

correct behaviour is that they should reset the square to their own 

calculated limit, unless a higher value is already present in which 

case they leave it as is. 

 

 
Fig. 13. When two paths combine, pheromone should not be 

overwritten by ants who have travelled on a longer path. 

13 CONCLUSIONS & FUTURE WORK 

This paper has investigated the benefits of neuroevolution 

(NEAT) compared to fixed topology ANN by testing how 

pheromone behaviour can evolve in both, in relation to a hard 

coded designed benchmark (BM1). 

Future work could investigate simulating other colony or 

swarm intelligences with communication. Examples include 

smells in the air or environment such as territory marking, or 

sounds used for predator detection, warnings or communication. 

This paper has demonstrated neuroevolution applied to evolve 

pheromonome communication in simulated ant colonies. The 

core intelligence required to perform pheromone communication 

was summarised in form of the hard coded benchmark BM1, 

comprised of an IF block with 5 conditions. The 5 conditions 

were learnt by a fixed ANN and the actions to take within each 

IF statement were learnt with 92% accuracy. 

This paper was organised into several stages: (1) Developed a 

benchmark algorithm which produces swarm food foriaging 

behaviour. (2) Used the benchmark to produce a training dataset 

linking the ant sensor inputs to the desired output movement 

direction. (3) The training set was used to train a fixed topology 

neural network which produced the desired output in 92% of 

cases. (4) Implemented neuroevolution to evolve an ANN with 

augmented topology and weights to produce foriaging 

behaviour. This was successful and the evolved ANN controller 

resulted in high number of foods being collected by the swarm 

and returned to the nest. The evolved controller outperformed 

the benchmark algorithm which presumably was due to 

overfitting to a fixed level layout. 
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