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Abstract

In this paper, we consider the discontinuous Galerkin time stepping method for solving the linear space
fractional partial differential equations. The space fractional derivatives are defined by using Riesz fractional
derivative. The space variable is discretized by means of a Galerkin finite element method and the time
variable is discretized by the discontinuous Galerkin method. The approximate solution will be sought as a
piecewise polynomial function in t of degree at most q − 1, q ≥ 1, which is not necessarily continuous at the
nodes of the defining partition. The error estimates in the fully discrete case are obtained and the numerical
examples are given.
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1. Introduction

In this paper we will consider the discontinuous Galerkin time stepping methods for solving the following
linear space fractional partial differential equation, with 1/2 < α ≤ 1,

∂u(t, x)

∂t
− ∂2αu(t, x)

∂|x|2α
= f(t, x), 0 < t < T, 0 < x < 1, (1)

u(t, 0) = u(t, 1) = 0, 0 < t < T, (2)

u(0, x) = u0(x), 0 < x < 1, (3)

where the Riesz fractional derivative is defined by, [31], [32]

∂2αw(x)

∂|x|2α
= − 1

2 cos(απ)

(
R
0 D

2α
x w(x) + R

xD
2α
1 w(x)

)
,

and R
0 D

γ
xw(x) and R

xD
γ
1w(x), 1 < γ < 2 are called the left-sided and right-sided Riemann-Liouville fractional

derivatives, respectively,

R
0 D

γ
xw(x) =

1

Γ(2− γ)

d2

dx2

∫ x

0

(x− y)1−γw(y) dy, R
xD

γ
1w(x) =

1

Γ(2− γ)

d2

dx2

∫ 1

x

(y − x)1−γw(y) dy. (4)
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Space fractional partial differential equations are widely used to model complex phenomena, for example,
in quasi-geostrophic flow, the fast rotating fluids, the dynamic of the frontogenesis in meteorology, the diffu-
sions in fractal or disordered medium, the pollution problems, the mathematical finance and the transport
problems, soil contamination and underground water flow, see, e.g., [5], [9], [24], [4], [29].

In recent years, many authors consider the numerical methods for solving space fractional partial dif-
ferential equations, e.g., finite difference methods [1], [2], [27]-[28], [34]-[38], [40], [19], [30], finite element
methods [11], [12]-[18], [33], [41], [42] and spectral methods [25]-[26], [7], [8], matrix transfer technique
(MTT) [20]-[21]. Recently, Jin et al. [23] considered the finite element method for solving the linear space
fractional parabolic equation where the space fractional derivative is defined as left-sided Riemann-Liouville
derivative, see also [22]. The estimates in [23] are for both smooth and nonsmooth initial data, and are
expressed directly in terms of the smoothness of the initial data.

The Riesz space fractional partial differential equations were firstly proposed by Chaves [10] to investigate
the mechanism of super-diffusion. Benson et al. [3] [4] considered the fractional order governing equation
of Lévy motion. Zhang et al. [41] considered a finite element method in space and backward difference
method in time for solving Riesz space fractional partial differential equation. Sousa [36] studied a second
order numerical method for Riesz space fractional convection-diffusion equation. Bu et al. [6] considered
a finite element method in space and Crank-Nicolson method in time for solving Riesz space fractional
partial differential equations in two-dimensional case. Duan et al. [13] studied a finite element method in
space and backward Euler method in time for solving Riesz space fractional partial differential equations in
two-dimensional case.

In this paper, we will consider a finite element method in space and a discontinuous Galerkin method
in time for solving Riesz space fractional partial differential equation. When the approximating functions
are piecewise constant in time, we proved that the error is O(hr−α + kn) and the bounds contain the
terms ‖u‖r,Jn and ‖ut‖α,Jn , see Theorem 4.1 below. When the approximating functions are piecewise
linear in time, we proved that the error is O(h2(r−α) + k3n) and the bounds contain the terms ‖u‖r,Jn and
‖utt‖r,Jn , see Theorem 4.3 below. The advantages of the discontinuous Galerkin method is that, e.g., variable
coefficients and nonlinearities present no complication in principle. We obtain precise error estimates for
the discontinuous Galerkin method which make it possible to construct the adaptive methods based on the
automatic time-step control.

The paper is organized as follows. In Section 2, we introduce some fractional Sobolev spaces and some
basic lemmas. In Section 3, we give the error estimates for the backward Euler method. In Section 4, we
consider the error estimates for the discontinuous Galerkin time stepping method for q = 1, 2. Finally in
Section 4, we give two numerical examples.

By C we denote a positive constant independent of the functions and parameters concerned, but not
necessarily the same at different occurrences.

2. Preliminaries

In this section, we will introduce some fractional Sobolev spaces.

Definition 2.1. [14], [25] For any σ > 0, we define the spaces lHσ
0 (0, 1) and rHσ

0 (0, 1) to be the closures
of C∞0 (0, 1) with respect to the norms ‖v‖ lHσ0 (0,1) and ‖v‖ rHσ0 (0,1), respectively, where

‖v‖2lHσ0 (0,1) := ‖v‖2L2(0,1) + ‖R0 Dσ
xv‖2L2(0,1),

and
‖v‖2rHσ0 (0,1) := ‖v‖2L2(0,1) + ‖RxDσ

1 v‖2L2(0,1).

The semi-norms are defined by |v| lHσ0 (0,1) := ‖R0 Dσ
xv‖L2(0,1) and |v| rHσ0 (0,1) := ‖RxDσ

1 v‖L2(0,1), respectively.
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Remark 2.1. In Definition 2.1, |v| lHσ0 (0,1), σ > 0 is a semi-norm (not a norm) since |v| lHσ0 (0,1) = 0 does

not imply v = 0. For example, when 0 < σ < 1, let w(x) = xσ−1, we have w(x) 6= 0 and

R
0 D

σ
xw(x) =

1

Γ(1− σ)

d

dx

∫ x

0

(x− y)−σw(y) dy =
1

Γ(1− σ)

d

dx

∫ x

0

(x− y)−σyσ−1 dy

=
1

Γ(1− σ)

d

dx

∫ 1

0

t−σ(1− t)σ−1 dt = 0,

which implies that |w| lHσ0 (0,1) = ‖R0 Dσ
xw‖L2(0,1) = 0. The similar comments are for the semi-norm

|v| rHσ0 (0,1) and the semi-norm in Definitions 2.2 below.

Definition 2.2. [14], [25] For any σ > 0, σ 6= n − 1/2, n ∈ Z+, we define the space cHσ
0 (0, 1) to be the

closure of C∞0 (0, 1) with respect to the norm ‖v‖ cHσ0 (0,1), where

‖v‖2cHσ0 (0,1) := ‖v‖2L2(0,1) + |(R0 Dσ
xv,

R
xD

σ
1 v)|

The semi-norm is defined by |v|2cHσ0 (0,1) := |(R0 Dσ
xv,

R
xD

σ
1 v)|.

Definition 2.3. [14], [25] For any σ > 0, let Hσ(R) denote the fractional Sobolev space defined in the whole
line R. We define

Hσ(0, 1) = {v ∈ L2(0, 1) : ṽ|(0,1) = v,where ṽ ∈ Hσ(R)},

with the norm

‖v‖Hσ(0,1) = inf
ṽ∈Hσ(R),ṽ|(0,1)=v

‖ṽ‖Hσ(R),

where
‖ṽ‖Hσ(R) = ‖(1 + |w|2)σ/2F(ṽ)(w)‖L2(R),

and F(ṽ) denotes the Fourier transform of ṽ and the corresponding semi-norm is defined by |ṽ|Hσ(R) =
‖|w|σF(ṽ)‖L2(R). Further we define the Sobolev space Hσ

0 (0, 1) to be the closure of C∞0 (0, 1) with respect to
the norm ‖v‖Hσ(0,1) and the semi-norm in Hσ

0 (0, 1) is denoted by |v|Hσ0 (0,1).

Lemma 2.1. [14, Theorems 2.12, 2.13], [25, Lemmas 2.4, 2.5] Let σ > 0, σ 6= n − 1/2, n ∈ Z+. The
semi-norms and norms in spaces lHσ

0 (0, 1), rHσ
0 (0, 1), cHσ

0 (0, 1) and Hσ
0 (0, 1) are equivalent.

Below we will denote (·, ·) and ‖ · ‖ as the inner product and norm in L2(0, 1), respectively.

Lemma 2.2. Let σ > 0, σ 6= n− 1/2, n ∈ Z+, we have

(R0 D
σ
xv,

R
xD

σ
1 v) = cos(πσ)‖R0 Dσ

xv‖2, ∀ v ∈ Hσ
0 (0, 1).

In particular, (R0 D
σ
xv,

R
xD

σ
1 v) is negative when 1/2 < σ ≤ 1.

Proof: It is sufficient to prove

(R0 D
σ
xϕ,

R
xD

σ
1ϕ) = cos(πσ)‖R0 Dσ

xϕ‖2, ∀ ϕ ∈ C∞0 (0, 1).

In fact, we have, for any ϕ ∈ C∞0 (0, 1), [25],

(R0 D
σ
xϕ,

R
xD

σ
1ϕ) = (R−∞D

σ
x ϕ̃,

R
xD

σ
∞ϕ̃)L2(R) = cos(πσ)‖R−∞Dσ

x ϕ̃‖2L2(R) = cos(πσ)‖R0 Dσ
xϕ‖2,

where ϕ̃ is the extension of ϕ by zero outside of (0, 1).
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Lemma 2.3. Let 1/2 < α ≤ 1. We have, see [25],

(R0 D
2α
x w, v) = (R0 D

α
xw,

R
xD

α
1 v), ∀ w, v ∈ Hα

0 (0, 1),

(RxD
2α
1 w, v) = (RxD

α
1w,

R
0 D

α
xv), ∀ w, v ∈ Hα

0 (0, 1).

We also have the following fractional Poincaré inequality:

Lemma 2.4. [14], [17], [25] For u ∈ Hα
0 (0, 1), 1/2 < α ≤ 1, we have

‖u‖L2(0,1) ≤ C|u|Hα0 (0,1),

and for 0 < s < µ, s 6= n− 1/2, n ∈ Z+,

|u|Hs0 (0,1) ≤ C|u|Hµ0 (0,1).

Multiplying v ∈ Hα
0 (0, 1) in both sides of the equation (1) and integrating on (0, 1) we get, by Lemma

2.3,

(ut, v) +Bα(u, v) = (f, v), ∀ v ∈ Hα
0 (0, 1), (5)

u(0) = u0, (6)

where the bilinear form Bα(·, ·) is defined by

Bα(u, v) =
1

2 cos(απ)

(
(R0 D

α
xu,

R
xD

α
1 v) + (RxD

α
1 u,

R
0 D

α
xv)
)
. (7)

By Lemmas 2.1, 2.2 and 2.4, it is easy to show that the bilinear form Bα(·, ·) is symmetric, continuous
and coercive on Hα

0 (0, 1), 1/2 < α ≤ 1.
Let Sh ⊂ Hα

0 (0, 1), 1/2 < α ≤ 1 be the piecewise continuous linear finite element space. The finite
element method of (1)-(3) is to find uh(t) ∈ Sh such that

(uh,t, χ) +Bα(uh, χ) = (f, χ), ∀χ ∈ Sh, (8)

uh(0) = vh, (9)

where vh ∈ Sh is some appropriate approximation of u0 ∈ L2(0, 1).

3. The backward Euler method

In this section, we will consider the error estimates of the backward Euler method for solving (5)-(6).
Let us first consider the error estimates for solving (5)-(6) in the semidiscrete case.

To do this, we need to introduce the regularity assumption for the following fractional elliptic problem,
with 1/2 < α ≤ 1, g ∈ L2(0, 1),

− ∂2αw(x)

∂|x|2α
=

1

2 cos(απ)

(
R
0 D

2α
x w(x) +R

x D
2α
1 w(x)

)
= g(x), 0 < x < 1, (10)

w(0) = w(1) = 0. (11)

The variational form of (10)-(11) is to find w ∈ Hα
0 (0, 1) such that

Bα(w,ϕ) = (g, ϕ), ∀ϕ ∈ Hα
0 (0, 1). (12)
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Assumption 3.1. Let 1/2 < α ≤ 1. For w solving (12) with g ∈ L2(0, 1), there exists some r ∈ [α, 2α],
such that

‖w‖Hr0 (0,1) ≤ C‖g‖L2(0,1).

Remark 3.1. Suppose that the equation (10) only contain the left-sided Riemann-Liouville derivative, Jin
et al. [23, Lemma 4.2] and [22, Theorem 4.4] show that r = 2α− 1 + β, 0 ≤ β < 1/2 for 1/2 < α ≤ 1 in the
Assumption 3.1. For the equation (12) with the Riesz fractional derivative, we have at least w ∈ Hα

0 (0, 1).
Further we assume that, by the Assumption 3.1, there exists r ∈ [α, 2α] such that w ∈ Hr(0, 1) ∩Hα

0 (0, 1).
The similar assumption was also used in [14, Assumption 4.1].

We next introduce the fractional Ritz projection Rh,α on Sh.

Definition 3.1. Let 1/2 < α ≤ 1 and let v ∈ Hα
0 (0, 1). We define Rh,α : Hα

0 (0, 1)→ Sh by

Bα(Rh,αv, χ) = Bα(v, χ), ∀ χ ∈ Sh, v ∈ Hα
0 (0, 1). (13)

It is easy to see that Rh,α : Hα
0 (0, 1) → Sh is well defined since Bα(·, ·) is symmetric, continuous and

coercive on Sh. Further we have, see [14],

Lemma 3.2. Let v ∈ Hr(0, 1) ∩ Hα
0 (0, 1), 1/2 < α ≤ 1, α ≤ r ≤ 2α and let Rh,α : Hα

0 (0, 1) → Sh be the
fractional Ritz projection onto Sh defined as in (13). Then, under Assumption 3.1, there exists a constant
C = C(α) such that

‖Rh,αv − v‖+ hr−α|Rh,αv − v|Hα0 (0,1) ≤ Ch2(r−α)‖v‖Hr(0,1). (14)

Theorem 3.3. Let uh and u be the solutions of (8)-(9) and (5)-(6), respectively. Let α ≤ r ≤ 2α, 1/2 <
α ≤ 1. Let u0 ∈ Hr(0, 1). Then, under the Assumption 3.1, there exists a constant C = C(α) such that

‖uh(t)− u(t)‖ ≤ ‖vh − u0‖+ Ch2(r−α)
(
‖u0‖Hr(0,1) +

∫ t

0

‖ut(s)‖Hr(0,1) ds
)
. (15)

Proof: We write
uh(t)− u(t) = θ(t) + ρ(t),

where θ(t) = uh(t)−Rh,αu(t) and ρ(t) = Rh,αu(t)− u(t).
By Lemma 3.2, we have, with 1/2 < α ≤ 1,

‖ρ(t)‖ ≤ Ch2(r−α)‖u(t)‖Hr(0,1).

Note that

u(t) = u(0) +

∫ t

0

ut(s) ds,

we get

‖u(t)‖Hr(0,1) ≤ ‖u0‖Hr(0,1) +

∫ t

0

‖ut(s)‖Hr(0,1) ds.

Hence

‖ρ(t)‖ ≤ Ch2(r−α)
(
‖u0‖Hr(0,1) +

∫ t

0

‖ut(s)‖Hr(0,1) ds
)
.

We next consider the estimates for θ(t). Note that θ(t) satisfies

(θt, χ) +Bα(θ, χ) = (uh,t, χ) +Bα(uh, χ)− (Rh,αut, χ)−Bα(u, χ)

= (f, χ)− (Rh,αut, χ)−Bα(u, χ) = (ut −Rh,αut, χ)

= (−ρt, χ), ∀χ ∈ Sh.
5



Choose χ = θ, we get
(θt, θ) +Bα(θ, θ) = −(ρt, θ),

which implies, by Lemma 2.1,

1

2

d

dt
‖θ‖2 + C|θ|2Hα0 (0,1) ≤ −(ρt, θ) ≤ ‖ρt‖‖θ‖.

Note that |θ|2Hα0 (0,1) > 0, we get

1

2

d

dt
‖θ‖2 ≤ −(ρt, θ) ≤ ‖ρt‖‖θ‖,

which implies that
d

dt
‖θ(t)‖ ≤ ‖ρt(t)‖.

Hence,

‖θ(t)‖ ≤ ‖θ(0)‖+

∫ t

0

‖ρt(s)‖ ds ≤ ‖uh(0)−Rh,αu(0)‖+

∫ t

0

Ch2(r−α)‖ut(s)‖Hr(0,1) ds

≤ ‖uh(0)− u(0)‖+ Ch2(r−α)‖u(0)‖Hr(0,1) +

∫ t

0

Ch2(r−α)‖ut(s)‖Hr(0,1) ds.

Together these estimates complete the proof of Theorem 3.3.

�

We now introduce the backward Euler methods for solving (5)-(6). Let 0 = t0 < t1 < t2 < · · · < tN = T
be a partition of [0, T ] and k be the time step size. Let Un ≈ uh(tn) be the approximation of uh(tn). The
backward Euler method for solving (5)-(6) is to find Un ∈ Sh, such that(Un − Un−1

k
, χ
)

+Bα
(
Un, χ) = (f(tn), χ

)
, ∀χ ∈ Sh, (16)

U0 = vh, (17)

or

(Un, χ) + kBα
(
Un, χ

)
= (Un−1 + kf(tn), χ), (18)

U0 = vh. (19)

Theorem 3.4. Let Un and u(tn) be the solutions of (16)-(17) and (5)-(6), respectively. Let α ≤ r ≤
2α, 1/2 < α ≤ 1. Assume that u0 ∈ Hr(0, 1) and

‖vh − u0‖ ≤ Ch2(r−α)‖u0‖Hr(0,1).

We have, under the Assumption 3.1, with n = 1, 2, . . . , N ,

‖Un − u(tn)‖ ≤ Ch2(r−α)
(
‖u0‖Hr(0,1) +

∫ tn

0

‖ut‖Hr(0,1) ds
)

+ k

∫ tn

0

‖utt‖ ds.

Proof: We write

Un − u(tn) =
(
Un −Rh,αu(tn)

)
+
(
Rh,αu(tn)− u(tn)

)
= θn + ρn.
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Here ρn = ρ(tn) is bounded by

‖ρn‖ = ‖Rh,αu(tn)− u(tn)‖ ≤ Ch2(r−α)‖u(tn)‖Hr(0,1) ≤ Ch2(r−α)
∥∥u0 +

∫ t

0

ut(s) ds
∥∥
Hr(0,1)

≤ Ch2(r−α)
(
‖u0‖Hr(0,1) +

∫ t

0

‖ut‖Hr(0,1) ds
)
.

We next estimate θn. Note that θn satisfies, by (16)-(17) and (5)-(6),(θn − θn−1
k

, χ
)

+Bα
(
θn,∇χ

)
(20)

=
(Un − Un−1

k
, χ
)
−
(
Rh,α

u(tn)− u(tn−1)

k
, χ
)

+Bα
(
Un, χ

)
−Bα

(
Rh,αu(tn), χ

)
= (ut(tn), χ)−

(
Rh,α

u(tn)− u(tn−1)

k
, χ
)

=
(
ut(tn)− u(tn)− u(tn−1)

k
, χ
)

+
(u(tn)− u(tn−1)

k
−Rh,α

u(tn)− u(tn−1)

k
, χ
)

= −(wn, χ),

where wn = wn1 + wn2 ,

wn1 = (Rh,α − I)
u(tn)− u(tn−1)

k
, wn2 =

u(tn)− u(tn−1)

k
− ut(tn).

Choose χ = θn in (20), we have

(θn, θn)− (θn−1, θn) + kBα
(
θn, θn

)
= −k(wn, θn).

Note that, by the coercivity property, Bα
(
θn, θn

)
≥ 0, we have

‖θn‖2 − (θn−1, θn) ≤ k‖wn‖‖θn‖,

or
‖θn‖2 ≤ ‖θn−1‖‖θn‖+ k‖wn‖‖θn‖.

Cancelling ‖θn‖, we get
‖θn‖ ≤ ‖θn−1‖+ k‖wn‖.

By repeated application, we have

‖θn‖ ≤ ‖θ(0)‖+ k

n∑
j=1

‖wj‖ ≤ ‖θ(0)‖+ k

n∑
j=1

‖wj1‖+ k

n∑
j=1

‖wj2‖.

We write

wj1 = (Rh,α − I)
u(tj)− u(tj−1)

k

= (Rh,α − I)k−1
∫ tj

tj−1

ut(s) ds = k−1
∫ tj

tj−1

(Rh,α − I)ut(s) ds

Hence

k

n∑
j=1

‖wj1‖ ≤
n∑
j=1

∫ tj

tj−1

‖(Rh,α − I)ut(s)‖ ds

≤
n∑
j=1

∫ tj

tj−1

Ch2(r−α)‖ut‖Hr(0,1) ds ≤ Ch2(r−α)
∫ tn

0

‖ut‖Hr(0,1) ds.

7



Further

kwj2 = u(tj)− u(tj−1)− kut(tj) = −
∫ tj

tj−1

(s− tj−1)utt(s) ds.

Thus

k

n∑
j=1

‖wj2‖ ≤
n∑
j=1

∥∥∥∫ tj

tj−1

(s− tj−1)utt(s) ds
∥∥∥ ≤ k n∑

j=1

∫ tj

tj−1

‖utt(s)‖ ds = k

∫ tn

0

‖utt(s)‖ ds.

Together these estimates complete the proof of Theorem 3.4.

�

4. The discontinuous Galerkin time stepping method

In Section 3, we obtain the error estimates for solving (5)-(6) by using the finite element method in
space and the backward Euler method in time. The error is O(h2(r−α) + k), α ≤ r ≤ 2α, 1/2 < α ≤ 1 and

the bounds contain the terms
∫ tn
0
‖ut(s)‖Hr(0,1) ds and

∫ tn
0
‖utt(s)‖ ds. In this section, we will consider the

discontinuous Galerkin time stepping method for solving (5)-(6). When the approximating functions are
piecewise constant in time, we proved that the error is O(hr−α + kn) and the bounds contain the terms
‖u‖r,Jn and ‖ut‖α,Jn , see Theorem 4.1 below. When the approximating functions are piecewise linear in
time, we proved that the error is O(h2(r−α) + k3n) and the bounds contain the terms ‖u‖r,Jn and ‖utt‖α,Jn ,
see Theorem 4.3 below.

Let 0 = t0 < t1 < · · · < tn−1 < tn < · · · < tN = T be the time partition of [0, T ]. Let kn = tn− tn−1, n =
1, 2, . . . , N be the time step size. Denote Jn = (tn−1, tn].

Define

Skh =
{
X : [0, T ]→ Sh, X|Jn =

q−1∑
j=0

Xjt
j , Xj ∈ Sh

}
,

where q is a given positive integer and X = X(t) ∈ Skh is left continuous at the discretization point tn, but
not necessarily right continuous at tn−1 on each subinterval Jn = (tn−1, tn], n = 1, 2, . . . , N . Denote Xn

− =

X(tn−) = limt→tn−X(t) and Xn−1
+ = X(tn−1+) = limt→tn−1+X(t). We then have Xn

− = X(tn) = Xn.
Further, let Snkh denote the restriction of Skh on Jn = (tn−1, tn].

The discontinuous Galerkin time stepping method of (5)-(6) is to find U = U(t) ∈ Snkh such that, with
n = 1, 2, . . . , N , ∫ tn

tn−1

[
(Ut, X) +Bα(U,X)

]
dt+ (Un−1+ , Xn−1

+ ) (21)

= (Un−1− , Xn−1
+ ) +

∫ tn

tn−1

(f,X) dt, ∀X ∈ Snkh,

U(tn−1) = Un−1− , (22)

or ∫ tN

t0

[
(Ut, X) +Bα(U,X)

]
dt+

N−1∑
n=1

([U ]n, X
n
+) + (U0

+, X
0
+) (23)

= (U0
−, X

0
+) +

∫ tN

t0

(f,X) dt, ∀X ∈ Skh,

U(0) = U0
− = vh. (24)
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Here [U ]n = Un+ − Un− denotes the jump of U at tn, n = 1, 2, . . . , N − 1.
Denote

B̄α(U,X) =

∫ tN

t0

[
(Ut, X) +Bα(U,X)

]
dt+

N−1∑
n=1

([U ]n, X
n
+) + (U0

+, X
0
+).

Then the discontinuous Galerkin time stepping method of (5)-(6) is to find U ∈ Skh such that

B̄α(U,X) = (U0
−, X

0
+) +

∫ tN

t0

(f,X) dt, ∀X ∈ Skh. (25)

We remark that in the case q = 1, (21)-(22) reduces to the following modified backward Euler method

(Un, χ) + knBα(Un, χ) = (Un−1, χ) +
(∫ tn

tn−1

f(t) dt, χ
)
, ∀χ ∈ Sh. (26)

Note that the fn = f(tn) occurring in the standard backward Euler method (18)-(19) has been replaced
by an average of f over (tn−1, tn). The standard backward Euler method may thus be interpreted as resulting
from (26) after quadrature.

We have the following theorem.

Theorem 4.1. Assume that kn+1/kn ≥ c > 0 for n ≥ 1 and let q = 1. Let Un and u(tn) be the solutions
of (21)-(22) and (5)-(6), respectively. Let α ≤ r ≤ 2α, 1/2 < α ≤ 1. Then we have, under the Assumption
3.1, with vh = Phu0, u0 ∈ L2(0, 1),

‖UN − u(tN )‖ ≤ CLN max
n≤N

(
hr−α‖u‖r,Jn + kn‖ut‖α,Jn

)
, (27)

where LN = 1 +
(

log tN
kN

)1/2
and ‖ϕ‖s,Jn = supt∈Jn ‖ϕ(t)‖Hs(0,1), s = α, r.

Denote Aα : D(Aα)→ L2(0, 1) by

Bα(ϕ,ψ) = (Aαϕ,ψ), ∀ϕ ∈ D(Aα), ψ ∈ Hα
0 (0, 1).

We may consider the following backward homogeneous problem

− zt +Aαz = 0, for t < tN , (28)

z(tN ) = ϕ. (29)

We next introduce the discrete fractional elliptic operator Ah,α : Sh → Sh by, with 1/2 < α ≤ 1,

(Ah,αψ, χ) =
1

2 cos(πα)

[(
R
0 D

α
xψ,

R
xD

α
1 χ
)

+
(
R
xD

α
1 ψ,

R
0 D

α
xχ
)]
, ∀ψ, χ ∈ Sh. (30)

The semidiscrete problem of (28)-(29) is then to find zh ∈ Sh such that

− zh,t +Ah,αzh = 0, for t < tN , (31)

zh(tN ) = Phϕ. (32)

The discontinuous Galerkin time stepping method for (31)-(32) is to find Zh ∈ Snkh such that∫ tn

tn−1

[
(Xh,−Zh,t) +Bα(Xh, Ah,αZh)

]
dt+ (Xh(tn−), Zh(tn−)) (33)

= (Xh(tn−), Zh(tn+)), ∀Xh ∈ Snkh,
Zh(tN+) = Zh(tN ) = Phϕ. (34)
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Here we use the fact that Bα(Xh, Zh) = (Ah,αXh, Zh) = (Xh, Ah,αZh).
We remark that (33)-(34) are obtained by transforming (31)-(32) into the forward homogeneous problem

and then apply the discontinuous Galerkin time stepping method (21)-(22) to this forward homogeneous
problem. In fact, let t = T − s, we assume

zh(t) = zh(T − s) = z̄h(s),

which implies that
zh,t = −z̄h,s, zh(tN ) = z̄h(0).

Here (31)-(32) is equivalent to the following forward homogeneous problem

z̄h,t +Ah,αz̄h = 0, for t ≤ tN , (35)

z̄h(0) = Phϕ. (36)

The discontinuous Galerkin time stepping method of (35)-(36) is to find Z̄h ∈ Snkh such that∫ tN−tn−1

tN−tn

[
(Z̄h,s, X̄h) + (Ah,αZ̄h, X̄h)

]
ds+

(
Z̄h
(
(tN − tn) +

)
, X̄h

(
(tN − tn) +

))
=
(
Z̄h
(
(tN − tn)−

)
, X̄h

(
(tN − tn)−

))
, ∀ X̄h ∈ Snkh,

which implies that, with s = tN − t, Z̄h(s) = Zh(t), Z̄h,s(s) = −Zh,t(t),∫ tn

tn−1

[
(Xh,−Zh,t) + (Xh, Ah,αZh)

]
dt+

(
Xh(tN − (tN − tn)+), Zh(tN − (tN − tn)+)

)
=
(
Xh(tN − (tN − tn)−), Zh(tN − (tN − tn)−), ∀Xh ∈ Snkh,

or ∫ tn

tn−1

[
(Xh,−Zh,t) + (Xh, Ah,αZh)

]
dt+

(
Xh(tn−), Zh(tn−)

)
=
(
Xh(tn−), Zh(tn+)

)
, ∀Xh ∈ Snkh,

which is (33)-(34).
By summation with n = 1, 2, . . . , N , we get∫ tN

t0

[
(Xh,−Zh,t) + (Xh, Ah,αZh)

]
dt−

N−1∑
n=1

(
Xh(tn−), [Zh]n

)
+
(
Xh(tN−), Zh(tN−)

)
=
(
Xh(tN−), Zh(tN+)

)
=
(
Xh(tN−), Phϕ

)
, ∀Xh ∈ Skh.

It is easy to show that, by integration by parts with respect to t,

B̄α(Xh, Zh) =

∫ tN

t0

[
(Xh,−Zh,t) + (Xh, Ah,αZh)

]
dt

−
N−1∑
n=1

(
Xh(tn−), [Zh]n

)
+
(
Xh(tN−), Zh(tN−)

)
.

Hence we see that the solution Zh ∈ Skh of (33)- (34) satisfies

B̄α(Xh, Zh) =
(
Xh(tN−), Phϕ

)
=
(
Xh(tN−), ϕ

)
, ∀Xh ∈ Skh. (37)
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Lemma 4.2. Assume that kn+1/kn ≥ c > 0, n ≥ 1. Then we have for the solution of (37),∫ tN

0

(
‖Zh,t‖+ ‖Ah,αZh‖

)
dt+

N∑
n=1

‖[Zh]n‖ ≤ CLN‖ϕ‖,

where LN = 1 +
(

log tN
kN

)1/2
.

Proof: The proof is similar to the proof of [39, Lemma 12.3]. We omit the proof here.

�

Proof of Theorem 4.1: Let ũ denote the piecewise constant function (with respect to t) defined by

ũ(t) = u(tn), for t ∈ (tn−1, tn],

we write

e = U − u =
(
U −Rh,αũ

)
+
(
Rh,αũ− u

)
= θ + ρ,

where Rh,α is defined by (13).
For ρ, we have, noting that ũ(tN ) = u(tN ),

‖ρN‖ = ‖Rh,αũ(tN )− u(tN )‖ = ‖Rh,αu(tN )− u(tN )‖ ≤ Ch2(r−α)‖u‖Hr(0,1).

For θ, we have, with ϕ ∈ L2(0, 1), by (37),

B̄α(θ, Zh) = (θN , ϕ).

Thus

(θN , ϕ) = B̄α(θ, Zh) = B̄α(e− ρ, Zh) = B̄α(e, Zh)− B̄α(ρ, Zh).

Note that
B̄α(e,Xh) = B̄α(U − u,Xh) = 0, ∀Xh ∈ Skh.

In fact, we have, by (25),

B̄α(U,Xh) = (U0
−, Xh(0+)) +

∫ tN

t0

(f,Xh) dt, ∀Xh ∈ Skh.

Further

B̄α(u,Xh) =

∫ tN

t0

[
(ut, Xh) + (Aαu,Xh)

]
dt+

N−1∑
n=1

(
[u]n, Xh(tn+)

)
+
(
u0−, Xh(0+)

)
=

∫ tN

t0

(f,Xh) dt+ (u0−, Xh(0+)
)
.

Thus

B̄α(e,Xh) =
(
U0
− − u0−, Xh(0+)

)
=
(
Phu0 − u0, Xh(t0+)

)
= 0.

Therefore

(θN , ϕ) = −B̄α(ρ, Zh) = −
N∑
n=1

∫ tn

tn−1

[
(ρ,−Zh,t) +Bα(ρ, Zh)

]
+

N−1∑
n=1

(
ρn, [Zh]n

)
− (ρN , Phϕ). (38)
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Note that
Bα(ρ, Zh) = Bα(Rh,αρ, Zh) =

(
Rh,αρ,Ah,αZh

)
,

and ρn = 0, n = 1, 2, . . . , N , we have

(θN , ϕ) = −
N∑
n=1

∫ tn

tn−1

(
Rh,αρ,Ah,αZh

)
dt+

N−1∑
n=1

(
ρn, [Zh]n

)
− (ρN , Phϕ

)
≤ max

n≤N

(
‖ρ‖Jn + ‖Rh,αρ‖Jn

)[ ∫ tN

0

‖Ah,αZh‖ dt+

N−1∑
n=1

‖[Zh]n‖+ ‖ϕ‖
]
.

By (14) with r = α, we have

‖Rh,αρ‖Jn ≤ ‖Rh,αρ− ρ‖Jn + ‖ρ‖Jn ≤ Ch0‖ρ‖α,Jn + ‖ρ‖Jn ≤ C‖ρ‖α,Jn . (39)

We therefore have
‖θN‖ ≤ CLN max

n≤N
‖ρ‖α,Jn .

Note that,

‖ρ‖α,Jn = ‖Rh,αũ− u‖α,Jn ≤ ‖(Rh,α − I)ũ‖α,Jn + ‖ũ− u‖α,Jn
= ‖(Rh,α − I)u(tn)‖α,Jn + ‖ũ− u‖α,Jn ≤ Chr−α‖u(tn)‖Hr(0,1) + Ckn‖ut‖α,Jn
≤ Chr−α‖u‖r,Jn + Ckn‖ut‖α,Jn

Together these estimates complete the proof of Theorem 4.1.

�

Remark 4.1. Note that, by (14), the fractional Ritz projection Rh,α is not bounded in L2(0, 1). Therefore
we can not bound ‖Rh,αρ‖ by using ‖ρ‖ in (39) as in the proof of (12.50) in [39, pp. 199]. Therefore we can
only prove the convergence order O(hr−α) for the discontinuous Galerkin time stepping method with q = 1
for space fractional partial differential equation.

Theorem 4.3. Let q = 2, and assume that kn+1/kn ≥ c > 0 for n ≥ 1. Let Un and u(tn) be the solutions
of (21)-(22) and (5)-(6), respectively. Let α ≤ r ≤ 2α, 1/2 < α ≤ 1. Then we have, under the Assumption
3.1, with vh = Phu0, u0 ∈ L2(0, 1),

‖UN − u(tN )‖ ≤ CLN max
n≤N

(
h2(r−α)‖u‖r,Jn + k3n‖utt‖α,Jn

)
,

where LN = 1 +
(

log tN
kN

)1/2
and ‖ϕ‖s,Jn = supt∈Jn ‖ϕ(t)‖Hs(0,1), s = α, r.

Proof: With Jn = (tn−1, tn], n ≥ 1 and let ũ ∈ Sk denote the piecewise linear interpolant defined by

ũ(tn) = u(tn), n ≥ 0,∫
Jn

(ũ(t)− u(t))dt = 0, n ≥ 1,

i.e., ũ interpolates at the nodal points, and the interpolation error is orthogonal to any constant on Jn. This
interpolant is uniquely defined and the error estimates read as follows, See [39, (12.10), pp. 186]

|ũ(t)− u(t)|Hj0(0,1) ≤ Ck
3
n

∫
Jn

|utt(s)|Hj0(0,1), for t ∈ Jn, j = 0, 1. (40)
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This time we find instead of (38)

(θN , ϕ) = −
N∑
n=1

∫
Jn

(
− (ρ, Zh,t) +Bα(ρ, Zh)

)
dt+

N−1∑
n=1

(ρn, [Zh]n)− (ρN , Phϕ).

Here we have, using the definition of ũ,∫
Jn

(ρ, Zh,t) dt =

∫
Jn

(Rh,αũ− u, Zh,t) dt =

∫
Jn

(Rh,αu− u, Zh,t) dt,

and, by Lemma 4.2,

∣∣∣ N∑
n=1

∫
Jn

(Rh,αu− u, Zh,t) dt
∣∣∣ ≤ max

n≤N
‖Rh,αu− u‖Jn

∫ tN

0

‖Zh,t‖ dt

≤ CLNh2(r−α) max
n≤N

‖u‖r,Jn‖ϕ‖,

and similarly

∣∣∣N−1∑
n=1

(ρn, [Zh]n)
∣∣∣+ |(ρN , Phϕ)| ≤ max

n≤N
‖(Rh,αu− u)(tn)‖

(N−1∑
n=1

‖[Zh]n‖+ ‖Phϕ‖
)

≤ CLNh2(r−α) max
n≤N

‖u‖r,Jn‖ϕ‖.

Finally, by the definition of Rh,α,

N∑
n=1

∫
Jn

Bα(ρ, Zh) dt =

N∑
n=1

∫
Jn

Bα(ũ− u, Zh) dt

= −
N∑
n=1

∫
Jn

(
Aα(ũ− u), Zh

)
dt =

N∑
n=1

Kn,

By the Assumption 3.1 and the definition of the interpolant ũ, we have

|Kn| ≤ kn‖ũ− u‖r,Jn
∫
Jn

‖Zh,t‖ dt.

Thus we have

N∑
n=1

|Kn| ≤ max
n≤N

(
kn‖ũ− u‖r,Jn

) N∑
n=1

∫
Jn

‖Zh,t‖ dt ≤ CLN max
n≤N

(
k3n‖utt‖r,Jn

)
‖ϕ‖.

Hence we get the following estimates

|(θN , ϕ)| ≤ CLN max
n≤N

(
k3n‖utt‖r,Jn + h2(r−α)

)
‖ϕ‖.

Together these estimates complete the proof of Theorem 4.3.

�
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5. Numerical simulations

In this section, we will consider two numerical examples.

Example 5.1. Consider the following linear space fractional partial differential equation, with 1/2 < α ≤ 1,

∂u(t, x)

∂t
− ∂2αu(t, x)

∂|x|2α
= f(t, x), 0 < t < T, 0 < x < 1, (41)

u(t, 0) = u(t, 1) = 0, 0 < t < T, (42)

u(0, x) = u0(x), 0 < x < 1, (43)

where u0(x) = 0 and f(t, x) = 2tx2(1 − x)2 − t2(2 − 12x + 12x2). When α = 1, the exact solution is
u(t, x) = t2x2(1− x)2.

In the numerical simulation, we use the piecewise constant approximation in time and the linear finite
element approximation in space. We consider the experimentally determined orders of convergence (“EOC ”)
for the different α at tn = 1. We choose k = 0.001 and the different space step size hi = 1/2i, i = 1, 2, 3, 4, 5.

Let e
(i)
n = ‖u(tn)−Un‖L2(0,1) denote the L2 norm at tn = 1 obtained by using the different space step sizes

hi = 1/2i, i = 1, 2, 3, 4. Since the exact solution is not available, we will calculate the reference solution ( or
’true’ solution) u(tn) by using the very small time step size k = 0.0001 and space step size h = 2−10. By
Theorems 4.1, we have, with some α ≤ r ≤ 2α and 1/2 < α ≤ 1,

e(i)n ≤ Chr−αi , (44)

which implies that the convergence order r − α satisfies

log2

(
e(i)n /e(i+1)

n

)
≈ log2

(
hi/hi+1

)r−α
= r − α.

In Table 1, we observe that the experimentally determined orders of convergence (“EOC ”) are 2α which is
much better than the theoretical convergence order in Theorem 4.1.

k h EOC (α = 0.6 ) EOC(α = 0.7) EOC( α = 0.8) EOC(α = 0.9)
0.001 1/2
0.001 1/4 2.0132 2.4290 2.4232 2.3176
0.001 1/8 1.3547 1.6634 2.0163 2.1684
0.001 1/16 1.3493 1.3635 1.5023 1.5863

Table 1: The experimentally determined orders of convergence (“EOC ”) for the different α at tn = 1 in Example 1

Example 5.2. Consider the following linear space fractional partial differential equation, with 1/2 < α ≤ 1,

∂u(t, x)

∂t
− ∂2αu(t, x)

∂|x|2α
= f(t, x), 0 < t < T, 0 < x < 1, (45)

u(t, 0) = u(t, 1) = 0, 0 < t < T, (46)

u(0, x) = u0(x), 0 < x < 1, (47)

where u0(x) = x(1− x) and f(t, x) = 0.

In Table 2, we observe that the experimentally determined orders of convergence (“EOC ”) are also
better than our theoretical convergence order O(hr−α), α ≤ r ≤ 2α in Theorem 4.1. We will investigate this
issue in our future work.
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k h EOC (α = 0.6 ) EOC(α = 0.7) EOC( α = 0.8) EOC(α = 0.9)
0.001 1/2
0.001 1/4 1.4233 1.5410 1.5249 1.4240
0.001 1/8 1.0621 1.1559 1.4353 1.6324
0.001 1/16 1.0171 1.1045 1.2011 1.5345

Table 2: The experimentally determined orders of convergence (“EOC ”) for the different α at tn = 1 in Example 5.2
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