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Abstract. Parametric resonance is a type of nonlinear vibration phenomenon [1], [2] induced from the 

periodic modulation of at least one of the system parameters and has the potential to exhibit interesting 

higher order nonlinear behaviour [3]. Parametrically excited vibration energy harvesters have been 

previously shown to enhance both the power amplitude [4] and the frequency bandwidth [5] when 

compared to the conventional direct resonant approach. However, to practically activate the more 

profitable regions of parametric resonance, additional design mechanisms [6], [7] are required to 

overcome a critical initiation threshold amplitude. One route is to establish an autoparametric system 

where external direct excitation is internally coupled to parametric excitation [8]. For a coupled two 

degrees of freedom (DoF) oscillatory system, principal autoparametric resonance can be achieved when 

the natural frequency of the first DoF f1 is twice that of the second DoF f2 and the external excitation is in 

the vicinity of f1. This paper looks at combining rotary and translatory motion and use autoparametric 

resonance phenomena. 

1.  Introduction 

Energy Harvesting is a technology for capturing non-electrical energy from ambient energy sources, 

converting it into electrical energy and storing it to power wireless electronic devices. The process of 

capturing mechanical energy such as shocks and vibrations is a particular field of energy harvesting 

requiring specific types of energy harvesting devices, so called kinetic energy harvesters (KEH).  

There are many types of KEH’s, but all of those systems have one common goal: an ideal KEH can 

keep the kinetic proof mass in resonance over an infinite large excitation bandwidth. Conventional, 

first generation types of such transducers can harvest mechanical vibration energy effectively only in a 

narrow frequency window. Over time many different types of systems have been analytically 

characterized, designed and tested. Most of these systems show only small improvements with respect 

to their bandwidth. None of those systems can transfer mechanical vibration power into electrical 

energy over a wide frequency band. The ideal kinetic harvester system will have a simple mechanical 

structure as well as a wide vibration frequency range for which the system can transfer effectively 

environmental mechanical vibrations into electrical energy. In this paper a new KEH system is 

analytically and numerically examined, assuming that the basepoint excitation source is infinite 
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(which for such small energies you can safely assume). In chapter 2.1.  a mathematical system model 

is derived and in chapter 2.2.  numerical simulations are presented.  

2.  Design of 2DoF bistable rotatory-translatory KEH 

The lumped parameter model is depicted in Figure 1 having a rotary 𝜑(𝑡) and a translatory 𝑏(𝑡) 

degree of freedom. The proof mass 𝑚1 on cantilever 𝑙1 with a 1st DoF 𝜑(𝑡) can rotate on the pivot 𝑃1 

in the bounded region 𝛼0 > |𝜑(𝑡)|, otherwise it will hit lobe 𝑁1 or 𝑁2 and might have hard or soft 

impact with a similar behavior treated in [3]. Perpendicularly attached (𝛾0 = 0°) to 𝑙1 at 𝑃1 is a passive 

cantilever beam 𝑙2. This cantilever has a translatory 2nd DoF 𝑏(𝑡) and carries an integrated 

piezoelectric (PE) transducer. On the tip of 𝑙2 is a second proof mass 𝑚2 carrying an electromagnetic 

(EM) transducer. The system is harmonically basepoint excited via 𝑦0 and the mass 𝑚1 at the end of 

cantilever 𝑙1 is permanent-magnetically suspended (in a similar fashion as described in [9]) to 

introduce a linear 𝑘 and nonlinear stiffness 𝑘3 plus a translatory viscous damping 𝑑 for the 1st DoF 𝜑.  

The 2nd DoF 𝑏 is similarly structured, having a linear stiffness 𝑘𝑏 and a nonlinear stiffness 𝑘3𝑏 (not 

depicted) plus a viscous damping 𝑑𝑏 and an additional electromagnetic damping 𝑑𝑒. Depending on the 

angle 𝛾0, the cantilever length 𝑙1,2 and the proof masses 𝑚1,2, the system is in a monostable or bistable 

configuration. In case of the latter, the system has two stable energy wells, depicted in Figure 2, 

bottom diagram with 𝜑(𝑡) = +𝜑01 and 𝑏(𝑡) = +𝑏01. Its unstable equilibrium point is shaped by the 

mass ratio 𝜆𝑚 = 𝑚2: 𝑚1 and given length ratio’s 𝜆𝑙 = 𝑙2: 𝑙1. In case both masses and lengths are 

equal, the unstable equilibrium position would be 45° (see also 𝜆𝑚 = 1 crossing the blue line (𝜆𝑙 = 1) 

in top diagram of Figure 2). 
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Figure 1. Lumped parameter model of the electromagnetic 

piezoelectric 2DoF KEH with 1. rotational DoF represented 

by 𝜑(𝑡) and 2. translatory DoF represented by 𝑏(𝑡). 

Figure 2. Initial position of 𝜑0 for the L-cantilever to 

achieve an unstable equilibrium (top) and the phase plots of 

𝜑(𝑡) and 𝑏(𝑡) with initial displacement and no excitation. 

Cantilevers 𝑙1, 𝑙2 are assumed to have no mass and the quasi magnetically levitated mass 𝑚1 on 

cantilever 𝑙1 attached to the pivot 𝑃1 transforms the translatory basepoint excitation 𝑦0 into a rotary 

oscillation. The electromagnetic transducer damping (transduction factor 𝜀𝐸𝑀 in [Vs/m]) is present in 

the mechanical domain in the resulting torque DE of 𝜑(𝑡) and the force DE 𝑏(𝑡) whereas the 

piezoelectric damping (transduction factor 𝜀𝑃𝐸 in [As/m]) is only present in the force DE 𝑏(𝑡). In this 

lumped parameter model the electrical circuit has an inductance 𝐿𝑐𝑜𝑖𝑙 and resistor 𝑅𝑐𝑜𝑖𝑙 and in series 

the resistive load 𝑅𝑙𝑜𝑎𝑑𝐸𝑀 attached. The piezoelectric transducer is drawn directly on the passive 

cantilever beam 𝑙2 and the piezo-ceramic is modeled as capacitor 𝐶. It is a separately uncoupled circuit 

in the electrical domain with resistive load 𝑅𝑙𝑜𝑎𝑑𝑃𝐸. 

Figure 3 shows studies I-IV with different system angles 𝛾0. Several studies were conducted for 

achieving resonance over a large frequency range using following four principle parameters: (1) angle 

𝛾0, (2) mass proportion factor 𝜆𝑀, (3) proportionality of natural frequencies 𝜔1, 𝜔2 and (4) range of Ω 



 

 

 

 

 

 

for analysis of sub-resonant and over-resonant response; in this paper only configuration I with system 

angle 𝛾0 = 0° is presented. 
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Figure 3. Configurations I-IV of the cantilever system; cantilever 𝑙2 is a passive beam with 

stiffness 𝑘𝑏; in configuration I 𝛾0 = 0°, e.g. beams are perpendicular to each other.  

2.1.  Lumped parameter model of the 2DoF rotary-translatory KEH system 

The equation of motion can be derived using the Lagrangian-Euler method, considering the system 

at first conservative. The Lagrangian total energy of this 2. DoF system is 
 𝐿(𝜑, 𝑏) = 𝑇(𝜑, 𝑏) − 𝑉(𝜑, 𝑏) = 0 (1) 

 The nonlinear magnetic spring shall be introduced directly via its energy (2). 
 

𝐹𝑆(𝑦) = 𝑘 𝑦 + 𝑘3 𝑦3  → 𝐸𝑆 = ∫ 𝐹𝑆(𝑦) 𝑑𝑦 =
1

2
𝑘 𝑦2 +

1

4
  𝑘3 𝑦4 (2) 

Summing all kinetic 𝑇 and potential 𝑉 energies of this system and adding 𝐸𝑆 of (2) to 𝑉 yields 
 

𝑇(𝜑, 𝑏) =
1

2
𝑚2�̇�2 +

1

2
𝑚2𝑙2 𝑐𝑜𝑠 𝛾0 �̇� �̇� +

1

2
𝑙1

2𝑚1�̇�2 +
1

2
𝑙2

2𝑚2�̇�2 +
1

2
𝑚2𝑏2�̇�2 + 𝑙2𝑚2 𝑠𝑖𝑛 𝛾0 𝑏�̇�2 (3) 

 
𝑉(𝜑, 𝑏) =

1

2
𝑘𝑏𝑏2 +

1

4
𝑘3𝑏𝑏4 + 𝑔𝑚2(𝑙2 𝑐𝑜𝑠(𝛾0 − 𝜑) − 𝑏 𝑠𝑖𝑛 𝜑) − 𝑔𝑚1𝑙1 𝑠𝑖𝑛 𝜑 +

1

2
𝑘𝑙1

2 𝑠𝑖𝑛2 𝜑 +
1

4
𝑘3𝑙1

4 𝑠𝑖𝑛4 𝜑 (4) 

In (4) also a nonlinear spring for the cantilever beam is introduced in the same fashion as the 

magnetic spring using linear beam stiffness 𝑘𝑏 and nonlinear stiffness 𝑘3𝑏. Following the Lagrangian 

formalisms and writing the set of DE dimensionless using 𝜔1 as reference will lead to following set: 
 𝜃′′(1 − 𝜆𝑚 + 𝜆𝑚 𝜆𝑙

2 − 2𝜆𝑙𝜆𝑚 𝑠𝑖𝑛 𝛾0 𝑢 + 𝜆𝑚𝑢2) + 2𝜉1 𝑠𝑖𝑛 𝜃 𝜃′ + 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 (1 + 𝛽 𝑠𝑖𝑛2 𝜃  ) + 2𝜆𝑚𝑢𝑢′𝜃′ 
+𝜚 𝑐𝑜𝑠 𝜃 (−1 + 𝜆𝑚 − 𝜆𝑚𝑢) + 𝜚𝜆𝑙𝜆𝑚 𝑠𝑖𝑛(𝛾0 − 𝜃) − 2𝜆𝑙𝜆𝑚 𝑠𝑖𝑛 𝛾0 𝑢′𝜃′ + 𝜆𝑙𝜆𝑚 𝑐𝑜𝑠 𝛾0 𝑢′′ + 𝜅𝐸𝜁 = −𝜆 𝛺2 𝑐𝑜𝑠(𝛺𝜏) 𝑠𝑖𝑛 𝜃  

(5) 

  𝑢′′ + 2𝜉2 𝛺0 𝑢′ + 𝛺0
2 𝑢(1 + 𝛽𝑏𝑢2) + 𝜆𝑙 𝑐𝑜𝑠 𝛾0 𝜃′′ − 𝑢𝜃′2

+ 𝜆𝑙 𝑠𝑖𝑛 𝛾0 𝜃′2
− 𝜚 𝑠𝑖𝑛 𝜃 + 𝜅𝐸𝜆𝑙𝜆𝑚

−1 𝜁 + 𝜅𝑃𝜆𝑃𝜆𝑙 𝛺0
2𝜐 = 0 (6) 

  𝜆𝐸  𝜆𝑙
−1𝛺0 𝑢′ + 𝜆𝐸  𝜃′ = 𝜁′ + 𝜆𝐸  𝜁 (7) 

 𝑢 + 𝜆𝑃𝜐 = 𝜌 (8) 
 𝜌′ = −𝜐 (9) 

Using following parameters for nondimensionalization (using 𝜔1 as reference): 
 

𝜆 =
𝐴

𝑙1

;  𝜆𝑙 =
𝑙2

𝑙1

;  𝜆𝑀 =
𝑚2

𝑚1 + 𝑚2

=
𝑚2

𝑚
;  𝛺 =

𝜔

𝜔1

;  𝜏 = 𝑡𝜔1; 𝜉1 =
𝑑

2𝑚1𝜔1

; 𝜉2 =
𝑑𝑏

2𝑚2𝜔2

 (10a) 

 
𝜔1

2 =  
𝑘

𝑚1 + 𝑚2 
 ; 𝜔2

2 =  
𝑘𝑏

𝑚2 
;   𝛺0

2 =
𝜔2

2

𝜔1
2

;  𝜚 =
𝑔

𝑙1𝜔1
2

; 𝛽 =
𝑘3

𝑘
 𝑙1

2; 𝛽𝑏 =
𝑘3𝑏

𝑘𝑏

 𝑙1
2  (10b) 

   𝑖𝑒0 =
𝜀𝐸𝑀 𝑙2 𝜔1

𝑅
; 𝑣𝑝0 = 𝑅 𝜔2𝑞𝑝0; 𝑞𝑝0 = 𝜀𝑃𝐸  𝑙2; 𝜅𝐸 =

𝜀𝐸𝑀
2

𝑚 𝑅 𝜔1
;  𝜅𝑃 =

𝜀𝑃𝐸
2

𝐶 𝑘𝑏
; 𝜆𝐸 =

𝑅

𝐿 𝜔1
; 𝜆𝑃 = 𝑅𝐶𝜔2 (10c) 

  angle 𝜃(𝜏) =
𝜑(𝑡)

𝜑0
, path 𝑢(𝜏) =

𝑏(𝑡)

𝑙1
, EM current  𝜁(𝜏) =

𝑖𝑒(𝑡)

𝑖𝑒0
, PE voltage  𝜐(𝜏) =

𝑣𝑝(𝑡)

𝑣𝑝0
, charge 𝜌(𝜏) =

𝑞𝑝(𝑡)

𝑞𝑝0
 (10d) 

Note also that above set of equation is highly nonlinear and not reflected in above set of DE is the 

impact when 𝜃 reaches ±𝛼0; see also [3] for a possible nomenclature of such conditions.  

2.2.  Mechanical domain (𝜃 and 𝑢) and electrical domain (𝜁, 𝜈, 𝜌) response  

Extensive dimensioned and dimensionless simulations were conducted with Mathematica and Matlab 

Simulink (solvers ODE23 of Bogacki-Shampine and ODE45 of Dormand-Price) using the coupled DE 

system (5)-(9) and corresponding parameters for nondimensionalization (10a)-(10d) to investigate the 

dynamics of this highly nonlinear system. In the following simulations an impact of 𝑚1 into the 

supporter structure at 𝑁1,2 (shown in Figure 1) will result in a light elastic impact and its impact 

velocity is reversed to 40% of its impact velocity. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4. Dimensionless response and input (top); phase 

space behavior on upward sweep (middle) and its 

corresponding frequency-response (bottom) 

 Figure 5. Dim. less response of PE voltage and EM 

current (top); phase space behavior of downward sweep 

and its corresponding frequency-response (bottom) 

Particular attention was given to the initial positions of the system θ, θ′ and u, u′, as depending on 

its configuration, an initial torque is created, which puts the system not in rest. For example, if the 

starting condition of θ will be set to 𝛼0 using also an according weak stiffness – the angle θ might stay 

at the oscillating lobe 𝑁1 (depending heavily also of all system parameters) and the 2nd DoF 𝑢 will 

show in such a case only a classic linear frequency response. For having a broadband response, 𝑚1 

needs to be able to exert a slight oscillation (for configuration I with λ𝑀 = 0.25). 

𝛼0 = 0.2 

𝛼0 = 0.2 



 

 

 

 

 

 

Figure 4 depicts mechanical domain diagrams, top and middle diagrams show responses 

dimensionless, bottom diagram depicts the frequency response of 𝜑 ≡ 𝜙 and 𝑢 ≡ 𝑏. Top and middle 

diagram of Figure 5 show dimensionless electrical response and phase space response, bottom diagram 

depicts the frequency response of 𝜙 and 𝑏. Top diagram of Figure 4 shows excitation signal of an 

upward frequency sweep (𝛺 = 0.3 − 18) in light blue; for each frequency step-cycle 40 periods are 

used and an amplitude step of 𝛥 = 0.05𝛺 is applied. The system in this configuration is set to have its 

natural frequencies at 𝜔1: 𝜔2 = 1: 3.5 (like its 𝜆𝑙 relation; other frequency ratios were tested, 

𝜔1: 𝜔2 = 1: 3 exerts similar results, but not 𝜔1: 𝜔2 = 1: 2). The damping of 𝜃 and 𝑢 is set to 𝑑 =
0.1𝑁𝑠/𝑚; in case both damping factors are doubled, resulting amplitudes are at least reduced by 

factor 6 with exception of the subharmonic response at 𝛺 = 0.5 on an upward seep (depicted in 

orange, bottom diagram in Figure 4). On a downward sweep, the amplitudes are only reduced by ca. 

20% (depicted in orange, bottom diagram in Figure 5). The excitation amplitude is set to 𝐴 = 0.5𝑚𝑚. 

If a smaller amplitude is used, the system will not behave as depicted in Figure 4 and Figure 5. The 

response of 𝑏 and 𝜙, particularly 𝜙 is showing a beat frequency. In the electrical domain, the 

advantage of having a PE and EM transducer coupled is the resulting 180° phase shift of current and 

voltage (see also Figure 5, top diagram) which is particularly useful for a DC-DC converter next in 

line. 

3.  Conclusions 

Presented KEH system is a new approach for the realization of a wideband KEH. Such a device can 

also be tuned to different environmental frequency bands by simply setting the system cantilever angle 

𝛾0 (see Figure 3). This KEH system is discussed only for bi-stable configuration I, but additional bi-

stable (II) and mono-stable (III and IV) configurations are available. It shows a particularly large and 

long resonance on an upward sweep (𝛺 = 5 − 18), above the detuned system resonance of 𝛺 ≈ 4.4 

(which is always accessible, e.g. independent of the frequency sweep direction). Like in all nonlinear 

systems, the hysteresis causes to access this large frequency band only by tuning into this region with 

an upward frequency sweep. Having a downward frequency sweep (Figure 5, middle and bottom), 

also a resonance region is found with ca. 6x larger amplitudes for b and ca. 3.5x larger for 𝜑 resulting 

in an impact behavior where 𝜑  reaches 𝛼0 (Figure 5, bottom/middle) in the region of 𝛺 = 5 − 3.8. 
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