Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design

Sijun Du, Yu Jia and Ashwin Seshia
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
E-mail: sd672@cam.ac.uk; yu.jia.gb@ieee.org; aas41@cam.ac.uk

Abstract. A vibration energy harvester employs a clamped anchor and a resonant system free to vibrate with or without proof masses. Piezoelectric materials are distributed where distortion occurs in order to convert mechanical strain into electric charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examining the trade-off involved with respect to maximizing output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area of a cantilevered PVEH in order to maximize output power. The analytical formulation utilizes Euler-Bernoulli beam theory to model the mechanical response of the cantilever. The output power is deduced into a 5-order polynomial expression in function of the electrode area and the maximum power is found while 44% area of the cantilever is covered by electrode metal. The experimental results are also provided to verify the theoretical derivation.

1. Introduction
For the purpose of vibration energy harvesting, cantilevers with layers of piezoelectric material, substrate and two electrodes are widely used due to its simplicity and moderately high power density [1, 2, 3], as shown in figure 1. Currently, top and bottom electrode layers usually cover all the piezoelectric layer in order to extract as much power as possible. However, due to the distribution of strain in the piezoelectric layer while vibrating, the volumetric strain is higher near the clamped end and very little near the free end of the cantilever [4]. Because of the non-uniformly distributed strain long axis x, there should be an optimal value for the area of electrode, of we call it the active piezoelectric area. In this paper, the optimal area of active piezoelectric layer for a maximum power output is calculated from the Euler-Bernoulli beam theory and the result is experimentally verified by a MEMS scale cantilevered PVEH.

2. Theoretical derivation
In this section, the optimal area of electrode layer is theoretically derived for a maximum power from a cantilevered energy harvester. The figure 2 shows the structure of a cantilever with some parameters for calculation. The length, width, thickness of the piezoelectric and substrate layers are L, H, W and h respectively. It is assumed that the width of the electrode layer is also W, but its length starts from the clamped end is a variable x, which is the value that we aim to find to maximize the power output.
The calculation starts from the Euler-Bernoulli Beam Theory [5], which gives an approximate relation between displacement along z-axis for a specific point of beam at (x) and the applied external force. This equation is given by equation 1 [6]:

\[EI \frac{d^4 \omega(x)}{dx^4} = q(x) \]

In the equation 1, the parameters \(E \) and \(I \) represent the Young’s modulus and Second moment of area of the entire cantilever respectively; \(\omega(x) \) is the displacement (m) of a point at \(x \), and \(q(x) \) is the external excitation force per unit length (N/m). Assuming that the excitation force is \(F = F_0 \sin(\omega_0 t) \) and the force is uniformly distributed along x-axis, so we have:

\[q = \frac{F}{L} = \frac{F_0}{L} \sin(\omega_0 t) \]

By integrating the equation 1 and applying the Dirichlet Boundary Conditions (at the clamped end: \(\omega' = 0 \) and \(\omega = 0 \); at the free end: \(\omega''' = 0 \) and \(\omega'' = 0 \)), we have:

\[\omega(x) = \frac{1}{24}AX^4 - \frac{1}{6}ALx^3 + \frac{1}{4}AL^2x^2 \]

where \(A = \frac{q}{EI} \). For a symmetrical bending, the tensile stress experienced by the beam can be expressed as \(\sigma_{(x,y,z)} = \frac{M}{I} \), where \(M \) is the bending moment which is given by \(M = -EI \frac{d^2 \omega(x)}{dx^2} \), \(I \) is the second moment of area, so we have the stress given by:

\[\sigma_{(x,y,z)} = -zE \frac{d^2 \omega(x)}{dx^2} = -z \frac{q}{I} \left(\frac{1}{2}x^2 - Lx + \frac{1}{2}L^2 \right) \]
This stress $\sigma_{(x,y,z)}$ is the stress per unit area (N/m^2) and its variable z starts from the neutral axis as shown in figure 2. So the amount of charge generated by the strain is expressed as:

$$Q_{(x,y,z)} = d_{31}\sigma_{(x,y,z)} = -zd_{31}q \left(\frac{1}{2}x^2 - Lx + \frac{1}{2}L^2 \right)$$ \hspace{1cm} (5)

This is the charge generated per area $dxdy$ at z, as shown in figure 2. The total surface charge can be calculated by integrating equation 5.

$$Q_{total} = -d_{31} \frac{F_0 W(h + H)}{L} \frac{1}{2I} \left(\frac{1}{6}x^3 - \frac{1}{2}Lx^2 + \frac{1}{2}L^2x \right) \sin(\omega_0 t)$$ \hspace{1cm} (6)

When the cantilever is vibrating at its natural frequency, the equivalent electrical circuit for the cantilever can be equivalent to a current source I_P connected with a capacitor C_P and a resistor R_P in parallel [7]. The generated power by the harvester is the power consumed by the internal impedance (capacitor and resistor in parallel) from the current source. The current source I_P can be calculated from the derivative of charge to time:

$$i_p = \frac{dQ_{total}}{dt} = i_0\cos(\omega_0 t) \hspace{0.5cm} \text{(with } i_0 = -d_{31} \frac{F_0 \omega_0 W(h + H)}{L} \frac{1}{2I} \left(\frac{1}{6}x^3 - \frac{1}{2}Lx^2 + \frac{1}{2}L^2x \right) \text{)}$$ \hspace{1cm} (7)

The internal impedance can be deduced from the capacitance and resistor in parallel:

$$Z_p = C_p/ / R_p = \frac{R_p}{\frac{2\pi C_p}{j\omega_0\varepsilon_0\varepsilon_0} + \frac{1}{xW}} = \frac{\rho}{1 + j\omega_0\varepsilon_0\varepsilon_0 xW}$$ \hspace{1cm} (8)

By applying the second moment of area $I = \frac{W(h+H)^3}{12}$, we have that the generated power by the harvester is:

$$\Rightarrow P_0 = B \left(\frac{1}{36}x^5 - \frac{1}{6}Lx^4 + \frac{5}{12}L^2x^3 - \frac{1}{2}L^3x^2 + \frac{1}{4}L^4x \right) \left(B = d_{31}^2 F_0^2 \omega_0^2 \frac{18H}{WL^2(h + H)^3} \frac{\rho}{1 + j\omega_0\varepsilon_0\varepsilon_0} \right)$$ \hspace{1cm} (9)

The equation 9 gives the expression of the generated power by the harvester. From the Matlab plotting in figure 5, the output power is at its maximum value when $x \approx 0.44L$. From the expression of stress along x-axis in equation 4, it can be found that the stress at $x = 0.44$ is around 31% of the maximum stress value.

Figure 3. Cantilever piezo harvester with optimal electrode length
Table 1. Experimental output power comparison of cantilever with 8 regions (frequency: 1208 Hz, acceleration: 0.1 g)

<table>
<thead>
<tr>
<th>Electrode area</th>
<th>Measured capacitance (nF)</th>
<th>Matched load resistor (kΩ)</th>
<th>Measured Power (nW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>20%</td>
<td>0.464</td>
<td>280</td>
<td>140.01</td>
</tr>
<tr>
<td>30%</td>
<td>0.858</td>
<td>160</td>
<td>180.63</td>
</tr>
<tr>
<td>40%</td>
<td>1.128</td>
<td>115</td>
<td>214.07</td>
</tr>
<tr>
<td>50%</td>
<td>1.401</td>
<td>95</td>
<td>222.01</td>
</tr>
<tr>
<td>60%</td>
<td>1.673</td>
<td>75</td>
<td>213.16</td>
</tr>
<tr>
<td>70%</td>
<td>1.945</td>
<td>65</td>
<td>199.51</td>
</tr>
<tr>
<td>80%</td>
<td>2.217</td>
<td>55</td>
<td>189.55</td>
</tr>
<tr>
<td>100%</td>
<td>2.689</td>
<td>50</td>
<td>153.6</td>
</tr>
</tbody>
</table>

3. Experiment
In order to experimentally verify the theoretical calculation of the active area for optimal output power, a MEMS-scale cantilevered harvester without tip mass is fabricated. The size of the cantilever is 3.5 mm × 3.5 mm and the top electrode is split into 8 segments as shown in figure 4 (left). From the region 1 to region 8, they take room of 20%, 10%, 10%, 10%, 10%, 10% and 20% respectively, totally 100% of the cantilever. The device in the figure contains 12 electrode pads where there are 8 pads for 8 regions and 4 pads for ground.

The MEMS device to be tested is clamped in a chip socket, which is fixed on a shaker, see figure 4 (right). The natural frequency of the cantilever is 1208 Hz and the acceleration of applied excitation is around 0.5 g (where ‘g’ is gravity acceleration with g ≈ 9.8 m s⁻²). Experiments are performed with gradually increased top electrode area by adding regions from region 1 to 8.

For each active electrode area, load resistor is varied to find the value that matches the internal impedance. Table 1 shows the measured results and the figure 5 illustrates how the output power varies with different active electrode area (comparison of theoretical results and experimental results). By fitting the 8 points with a polynomial trend line, the maximum value can be found at around 48%. By comparing the theoretical value (44%) (solid line shown in figure 5), the error between these two values is due to the parasitic capacitance in the pads for the 8 regions and possibly the fabrication tolerance.
4. Conclusion
A theoretical calculation and experimental verification in this paper are performed to find an optimal active piezoelectric layer area for maximizing output power. The results show that maximizing active area cannot always increase output power; in the contrast, power can be reduced if the low-strain area is covered. For designing a piezoelectric vibration energy harvester in either macro-scale or MEMS-scale, the active layer does not necessarily need to cover all the area with the same strain direction. It can be found that the area with stress under about 31% of the maximum value should not be regarded as active area for cantilever structure. This design approach can also be applied to other structural topologies and mode shapes for PVEHs.

References