GASS IncRNA Modulates the Action of mTOR Inhibitors in Prostate Cancer Cells

Kiren Yacqub-Usman, Mark Pickard & Gwyn Williams
Keele University, Keele, Staffordshire, UK

Background

There is a need to develop new therapies for castrate-resistant prostate cancer (CRPC) and growth arrest-specific 5 (GASS) long non-coding RNA (lncRNA), which riborepresses androgen receptor action, may offer novel opportunities in this regard. GASS lncRNA expression declines as prostate cancer cells acquire castrate-resistance, and decreased GASS expression attenuates the responses of prostate cancer cells to apoptotic stimuli. Enhancing GASS lncRNA expression may therefore offer a strategy to improve the effectiveness of chemotherapeutic agents. GASS is a member of the 5' terminal oligopyrimidine gene family, and we have therefore examined if mTOR inhibition can enhance cellular GASS levels in prostate cancer cells. In addition, we have determined if GASS lncRNA itself is required for mTOR inhibitor action in prostate cancer cells, as recently demonstrated in lymphoid cells.

Method

The effects of mTOR inhibitors on GASS lncRNA expression and cell proliferation were determined in a range of prostate cancer cell lines. Transfection of cells with GASS siRNA and plasmid constructs was performed to determine the involvement of GASS lncRNA in mTOR inhibitor action.

Results

Treatment with rapamycin and rapalogues increased cellular GASS levels and inhibited culture growth in both androgen-dependent (LNCaP) and androgen-sensitive (22Rv1) cell lines, but not in androgen-independent (PC-3 and DU145) cells. GASS silencing in both LNCaP and 22Rv1 cells decreased their sensitivity to growth inhibition by mTOR inhibitors. Moreover, transfection of GASS lncRNA sensitized PC-3 and DU145 cells to mTOR inhibitors, resulting in inhibition of culture growth.

Conclusion

mTOR inhibition enhances GASS transcript levels in some, but not all, prostate cancer cell lines. This may in part be related to endogenous levels of GASS expression, which tend to be lower in prostate cancer cells representative of advanced disease, particularly since current findings demonstrate a role for GASS lncRNA in mTOR inhibitor action in prostate cancer cells.