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Abstract

In this paper, we first introduce an alternative proof of the error estimates of the numerical methods
for solving linear fractional differential equations proposed in Diethelm [6] where a first-degree compound
quadrature formula was used to approximate the Hadamard finite-part integral and the convergence order
of the proposed numerical method is O(∆t2−α), 0 < α < 1, where α is the order of the fractional derivative
and ∆t is the step size. We then use the similar idea to prove the error estimates of a high order numerical
method for solving linear fractional differential equations proposed in Yan et al. [37], where a second-degree
compound quadrature formula was used to approximate the Hadamard finite-part integral and we show that
the convergence order of the numerical method is O(∆t3−α), 0 < α < 1. The numerical examples are given
to show that the numerical results are consistent with the theoretical results.

Key words:
Fractional differential equations, fractional derivative, error estimates
AMS Subject Classification: 65M12; 65M06; 65M70;35S10

1. Introduction

In this paper, we will consider the numerical methods for solving the following linear fractional differential
equation

C
0 D

α
t x(t) = βx(t) + f(t), t ∈ [0, 1], (1)

x(0) = x0, (2)

where 0 < α < 1 and β < 0, x0 ∈ R denotes the initial value, f is a given function on the interval [0, 1] and
C
0 D

α
t x(t) denotes the Caputo fractional order derivative.
Diethelm [6] introduced a numerical method for solving (1)-(2) by approximating the Hadamard finite-

part integral with the first-degree compound quadrature formula and proved that the convergence order
is O(∆t2−α), where ∆t is the step size. Ford et al. [15] used the similar method to consider the time
discretization of the following time-fractional partial differential equation

C
0 D

α
t u(t, x)−∆u(t, x) = f(t, x), t ∈ [0, T ], x ∈ Ω, (3)

u(0, x) = 0, x ∈ Ω, (4)

u(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ω, (5)

where 0 < α < 1 and Ω is the bounded open domain in Rd, d = 1, 2, 3 and ∂Ω is the boundary of Ω. Here

∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

denotes the Laplacian operator with respect to the x variable.

Define A = −∆, D(A) = H1
0 (Ω) ∩H2(Ω). Then the system (3)-(5) can be written in the abstract form

C
0 D

α
t u(t) +Au(t) = f(t), 0 < t < T, 0 < α < 1, (6)

u(0) = u0, (7)

The time discretization problem of (6)-(7) is then the same as the discretization problem for solving (1)-
(2). Ford et al. [15] used the similar numerical method as in Diethelm [6] to consider the time discretization
of (6)-(7) and proved that the convergence order of the time discretization scheme is O(∆t2−α).

In [37], Yan et al. introduced a higher order numerical method for solving (1)-(2) by approximating the
Hadamard finite-part integral with second-degree compound quadrature formula and proved that the error
has the assympototic expansion as in [8]. However the authors in [37] can not prove the error estimates of
the higher order numerical method by using the argument in Diethelm [6]. It is not clear if it is possible to
extend the argument in [37] for solving linear fractional differential equation (1)-(2) to the time discretization
problem of (6)-(7). To make such extension possible, we develop a new method in this paper following the
idea in [27]. We first apply this method to prove the error estimates of the numerical methods in [6], we then
use the same idea to prove the error estimates of the high order numerical method in Yan et al. [37]. We
believe this method can be extended to consider the time discretization problem for solving time-fractional
partial differential equation and we will explore this extension in our another paper. The method in this
paper may also be possible to be adapted to consider the error estimates of the fractional differential equation
(1)-(2) with order α ∈ (1, 3).

Time fractional partial differential equations have many applications in areas such as diffusion processes,
electromagnetics, electrochemistry, material science, turbulent flow, chaotic dynamics, etc. [3], [4], [19], [20],
[31], [33]. Analytical solutions of time fractional partial differential equations were studied using Green’s
functions or Fourier-Laplace transforms [32], [30], [34], [36].

The numerical methods for fractional ordinary differential equations were studied in, for example, [5],
[6], [7], [14] [12], [13]. Numerical methods for fractional partial differential equations were also studied by
some authors. Liu et al. [29] employed the finite difference method in both space and time and analyzed the
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stability condition. Sun and Wu [35] proposed a finite difference method for the fractional diffusion-wave
equation. Langlands and Henry [22] considered an implicit numerical scheme for fractional diffusion equation.
Lin and Xu [27] proposed a finite difference method in time and Legendre spectral method in space. Li and
Xu [26] proposed a time-space spectral method for time-space fractional partial differential equation based
on a weak formulation and a detailed error analysis was carried out. Ervin and Roop [10], [11] used finite
element methods to find the variational solution of the fractional advection dispersion equation, in which the
fractional derivative depends on the space, related to the nonlocal operator, but the time derivative term is
of first order, related to the local operator. Adolfsson et al. [1], [2] considered an efficient numerical method
to integrate the constitutive response of fractional order viscoelasticity based on the finite element method.
Li et al. [25] considered a time fractional partial differential equation by using the finite element method
and obtain the error estimates in both semidiscrete and fully discrete cases. Jiang et al. [21] considered a
high-order finite element method for the time fractional partial differential equaions and proved the optimal
order error estimates. See other numerical methods for solving time-fractional differential equations, [22],
[35], [27], [28], [16], [24], [17], etc.

Recently, Gao et al. [18] obtained a high order numerical differentiation formula with O(∆t3−α), 0 <
α < 1 for the Caputo fractional derivative by discretizing fractional derivative directly and applied this
formula for solving a time-fractional diffusion equation. But there are no error estimates in [18]. Li et
al. [23] also introduced a high order O(∆t3−α), 0 < α < 1 numerical method to approximate the Caputo
fractional derivative and applied this method for solving time-fractional advection-diffusion equation. The
error estimates and stability analysis are considered only for α ∈ (0, α1) with some positive α1 ∈ (0, 1) in
[23]. In this paper, we will prove the error estimates of the high order numerical methods introduced by
Yan et al. [37] and the convergence order is O(∆t3−α), 0 < α < 1. We emphasize that our analysis works
for all 0 < α < 1.

The paper is organized as follows. In Section 2, we consider the proof of the error estimates of the
numerical methods for solving linear fractional differential equations proposed by Diethelm [6]. In Section 3,
we consider the proof of the error estimates of the numerical methods for solving linear fractional differential
equation proposed by Yan et al. [37]. The numerical examples are given in Section 4.

By C, c0 we denote some positive constants independent of the functions and parameters concerned, but
not necessarily the same at different occurrences.

2. Linear interpolation

In this section, we will review Diethelm’s method [6] where the Hadamard finite-part integral is approx-
imated by using the piecewise linear interpolation polynomials.

Let us write (1)-(2) as the following form, [6], with 0 < α < 1,

R
0 D

α
t [x(t)− x0] = βx(t) + f(t), 0 ≤ t ≤ 1, (8)

where R
0 D

α
t x(t) denotes the Riemann-Liouville fractional derivative defined by

R
0 D

α
t x(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−αx(τ) dτ. (9)

The Riemann-Liouville fractional derivative R
0 D

α
t x(t) can be written as, with x ∈ C2[0, 1],

R
0 D

α
t x(t) =

1

Γ(−α)

∮ t

0

(t− τ)−1−αx(τ) dτ, (10)

where the integral must be interpreted as a Hadamard finite-part integral. [9, Theorem 2.1]
Let n be a fixed positive integer. Let 0 = t0 < t1 < t2 < · · · < tj < · · · < tn = 1 be a partition of [0, 1]

and ∆t the step size. At the points tj = j
n , j = 1, 2, . . . , n, we have

R
0 D

α
t [x(tj)− x0] = βx(tj) + f(tj), j = 1, 2, . . . , n,
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that is,
1

Γ(−α)

∮ tj

0

(tj − τ)−1−α[x(τ)− x0] dτ = βx(tj) + f(tj), j = 1, 2, . . . , n. (11)

Let us consider how to approximate the Hadamard integral in (11). By the change of variable, we have

1

Γ(−α)

∮ tj

0

(tj − τ)−1−αx(τ) dτ =
t−αj

Γ(−α)

∮ 1

0

w−1−αx(tj − tjw) dw.

For every j, we approximate the integral by a piecewise linear interpolation polynomial with the equis-
paced nodes 0, 1

j ,
2
j , . . . ,

j
j . We then have, for some smooth function g(w),∮ 1

0

w−1−αg(w) dw =

∮ 1

0

w−1−αg1(w) dw + Ej(g), (12)

where g1(w) is the piecewise linear interpolation polynomial of g(w) and Ej(g) is the remainder term.
We have

Lemma 2.1. [6] Let 0 < α < 1. Assume that g ∈ C2[0, 1]. Then∫ 1

0

w−1−αg(w) dw =

j∑
k=0

αkjg
(k
j

)
+ Ej(g), (13)

where

α(1− α)j−ααkj =


−1, for k = 0,

2k1−α − (k − 1)1−α − (k + 1)1−α, for k = 1, 2, . . . , j − 1,

(α− 1)k−α − (k − 1)1−α + k1−α, for k = j.

By using (11)-(13), we obtain the following approximation of the Riemann-Liouville fractional derivative
R
0 D

α
t x(t) at t = tj

R
0 D

α
t x(tj) = ∆t−α

j∑
k=0

wk,jx(tj−k) +Rj1,

where Rj1 = C∆t2−α
(

max0≤s≤1 |x′′(s)|
)

= O(∆t2−α) [6] is the remainder term and the weights wk,j , k =
0, 1, 2, . . . , j satisfy

Γ(2− α)wk,j = (−α)(−α+ 1)(j)−ααk,j , (14)

For the Caputo fractional derivative C
0 D

α
t x(t) at t = tj , we have, noting that R0 D

α
t x(0) = x(0)R0 D

α
t (1) =

x(0)
Γ(1−α) t

−α,

C
0 D

α
t x(tj) = R

0 D
α
t

(
x(tj)− x(0)

)
= ∆t−α

j∑
k=0

w̄k,jx(tj−k) +Rj1, (15)

where w̄k,j = wk,j for k = 0, 1, 2, . . . j − 1, j ≥ 1 and w̄j,j = wj,j − j−α

Γ(1−α) .

The exact solution of (1)- (2) then satisfies

w̄0,jx(tj)−∆tαβx(tj) = −
j∑

k=1

w̄k,jx(tj−k) + ∆tαf(tj)−∆tαRj1,

or

x(tj)− (w̄0,j)
−1(∆tαβ)x(tj) =

j∑
k=1

dj−kx(tj−k) + (w̄0,j)
−1∆tαf(tj)− (w̄0,j)

−1∆tαRj1, (16)
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where dj−k = −w̄k,j/w̄0,j , k = 1, 2, . . . , j, j ≥ 1.
Let xj ≈ x(tj), j ≥ 0 denote the approximate solution of x(tj). We define the following numerical method

for solving (16), with x0 = x0,

xj − (w̄0,j)
−1(∆tαβ)xj =

j∑
k=1

dj−kxj−k + (w̄0,j)
−1∆tαf(tj), j = 1, 2, . . . , n. (17)

We have the following error estimates.

Theorem 2.2. [6] Let x(t) and xj be the exact solution and the approximate solution of (16) and (17),
respectively. Assume that x ∈ C2[0, 1]. Then there exists a constant C = C(α, f, β) such that

|x(tj)− xj | ≤ C∆t2−α, j = 1, 2, . . . , n.

Remark 2.1. Our proof of Theorem 2.2 is new and is different from the proof in [6]. We shall use the
same idea to consider the proof of Theorem 3.4 for the higher order method in Section 3. Therefore it may
be helpful to give the new proof of Theorem 2.2 in detail here in order to understand the idea of the proof of
Theorem 3.4.

To prove Theorem 2.2, we need the following lemma.

Lemma 2.3. For 0 < α < 1, the coefficients in (17) satisfy, with j = 1, 2, . . . , n,

j∑
k=1

dj−k = 1, (18)

dj−k > 0, k = 1, 2, . . . , j, (19)

d−1
0 ≤ c0∆t−α, for some constant c0. (20)

Proof: We first show (18). Choose x(t) = 1 in (15), we have

∆t−α
j∑

k=0

w̄k,j = 0, j = 1, 2, . . . , n,

which implies that
w̄0,j + w̄1,j + w̄2,j + · · ·+ w̄j,j = 0, j = 1, 2, . . . , n,

or, noting that dj−k = −wk,j/w0,j , k = 1, 2, . . . , j, j = 1, 2, . . . , n,

dj−1 + dj−2 + · · ·+ d1 + d0 = 1,

which is (18).
We now consider (19). It is trivial for j = 1. Here we only consider the case for k = 1, 2, . . . , j − 1, j =

2, 3, . . . , n, we have

Γ(2− α)wk,j = (−α)(−α+ 1)(j)−ααk,j = −2k1−α + (k − 1)1−α + (k + 1)1−α

= k1−α
(
− 2 + (1− 1

k
)1−α + (1 +

1

k
)1−α

)
= k1−α

[
− 2 +

(
1 + (1− α)(−1

k
) +

(1− α)(−α)

2!
(−1

k
)2 +

(1− α)(−α)(−α− 1)

3!
(−1

k
)3 + . . .

)
+
(

1 + (1− α)
1

k
+

(1− α)(−α)

2!
(
1

k
)2 +

(1− α)(−α)(−α− 1)

3!
(
1

k
)3 + . . .

)]
= 2(1− α)(−α)k1−α

( 1

2k2
+

∞∑
m=2

(α+ 1)(α+ 2) . . . (α+ 2m− 3)(α+ 2m− 2)

(2m)!

1

k2m

)
,
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which implies that wk,j < 0 for k = 1, 2, . . . , j − 1, j = 2, 3, . . . , n. Thus, noting that Γ(2 − α)w0,j = 1, we
have

dj−k = − w̄k,j
w̄0,j

= −wk,j
w0,j

> 0, k = 1, 2, . . . , j − 1, j = 2, 3, . . . , n.

For k = j, j = 2, 3, . . . , n, we have

Γ(2− α)wj,j = −(α− 1)j−α + (j − 1)1−α − j1−α

= j1−α
[
− (α− 1)

1

j
− 1

+
(

1 + (1− α)(−1

j
) +

(1− α)(−α)

2!
(−1

j
)2 +

(1− α)(−α)(−α− 1)

3!
(−1

j
)3 + . . .

)]
= (1− α)(−α)j1−α

( 1

2j2
+

∞∑
m=3

(α+ 1)(α+ 2) . . . (α+m− 2)

(m)!

1

jm

)
,

which implies that wj,j < 0, j = 2, 3, . . . , n. Hence

d0 = − w̄j,j
w̄0,j

= −wj,j
w0,j

+
j−α

Γ(1− α)w0,j
> 0, j = 2, 3, . . . , n.

Finally we estimate (20). Note that, with j = 1, 2, . . . , n,

d0 = − w̄j,j
w̄0,j

= −wj,j
w0,j

+
j−α

Γ(1− α)w0,j
>

j−α

Γ(1− α)w0,j
.

Hence
d−1

0 ≤ Γ(1− α)w0,jj
α = Γ(1− α)w0,jt

α
j ∆t−α < c0∆t−α,

for some constant c0.
Together these estimates complete the proof of Lemma 2.3.

�

Proof of Theorem 2.2: Let ej = xj − x(tj), j = 0, 1, . . . , n. Subtracting (16) from (17), we have

ej − (w̄0,j)
−1(∆tαβ)ej =

j∑
k=1

dj−kej−k + (w̄0,j)
−1∆tαRj1, j = 1, 2, . . . , n, (21)

where e0 = 0 and dj−k = −w̄k,j/w̄0,j , k = 1, 2, . . . , j.
Multiplying ej in both sides of (21), we have, denoting (u, v) = u · v, ∀u, v ∈ R, with j = 1, 2, . . . , n,

(ej , ej)− (w̄0,j)
−1(∆tαβ)(ej , ej) =

j∑
k=1

dj−k(ej−k, ej) +
(
w̄0,j)

−1∆tαRj1, ej

)
.

Denote the norm, noting that β < 0,

|ej |21 = (ej , ej)− (w̄0,j)
−1(∆tαβ)(ej , ej), j ≥ 1.

We have, by (19),

|ej |21 ≤
j∑

k=1

dj−k|ej−k||ej |+
∣∣(w̄0,j)

−1∆tαRj1
∣∣|ej |, j = 1, 2, . . . , n.

5



Note that |ej | ≤ |ej |1, we have

|ej |1 ≤
j∑

k=1

dj−k|ej−k|1 + d0

∣∣d−1
0

(
w̄0,j)

−1∆tαRj1
∣∣, j = 1, 2, . . . , n. (22)

We will use the mathematical induction to show that, with k = 1, 2, . . . , j, j = 1, 2, . . . , n,

|e1|1 ≤ d0 max
1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣, (23)

|ek|1 ≤
(

1− dj−1 − · · · − dj−(k−1)

)−1(
d0 max

1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣), (24)

It is easy to see (23) holds. In fact, we have, by (21), with j = 1,

|e1|1 ≤
∣∣(w̄0,1)−1∆tαR1

1

∣∣ ≤ d0 max
1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣.

Let j ≥ 2 and assume that (23) and (24) hold true for k = 1, 2, . . . , j − 1, then for k = j, we have, by (22),

|ej |1 ≤ dj−1

(
1− dj−1 − · · · − d2

)−1
(
d0 max

1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣)

+ dj−2

(
1− dj−1 − · · · − d3

)−1
(
d0 max

1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣)

+ . . . . . .

+ d2

(
1− dj−1

)−1
(
d0 max

1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣)

+ d1 (1)−1
(
d0 max

1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣)

+ (1− dj−1 − · · · − d1)
(
1− dj−1 − · · · − d1

)−1
(
d0 max

1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣).

Thus, by (19),

|ej |1 ≤
(
1− dj−1 − · · · − d1

)−1(
d0 max

1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣),

which is (24). By (18) and (20), we obtain, with j = 2, 3, . . . , n,

|ej |1 ≤
d0

1− dj−1 − · · · − d1
max
1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣

≤ max
1≤l≤j

∣∣d−1
0 (w̄0,j)

−1∆tαRl1
∣∣ ≤ max

1≤l≤j

∣∣Rl1∣∣ ≤ C∆t2−α.

Together these estimates complete the proof of Theorem 2.2.

�

3. Quadratic interpolation polynomial

In this section, we will approximate the Hadamard finite-part integral in (10) by using piecewise quadratic
interpolation polynomial. Let n = 2M , where M denotes a fixed positive integer. Let 0 = t0 < t1 < t2 <
· · · < t2j < t2j+1 < · · · < t2M = 1 be a partition of [0, 1] and ∆t the step size. At the point t2j = 2j

2M , the
equation (8) can be written as

R
0 D

α
t [x(t2j)− x0] = βx(t2j) + f(t2j), j = 1, 2, . . . ,M, (25)

6



and at the point t2j+1 = 2j+1
2M , the equation (8) can be written as

R
0 D

α
t [x(t2j+1)− x0] = βx(t2j+1) + f(t2j+1), j = 1, 2, . . . ,M − 1. (26)

Let us first consider the discretization of (25). Note that

R
0 D

α
t x(t2j) =

1

Γ(−α)

∮ t2j

0

(t2j − τ)−1−αx(τ) dτ =
t−α2j

Γ(−α)

∮ 1

0

w−1−αx(t2j − t2jw) dw, (27)

where the integral must be interpreted as a Hadamard finite-part integral.
We replace the integral by a piecewise quadratic interpolation polynomial with the equispaced nodes

0, 1
2j ,

2
2j , . . . ,

2j
2j , j = 1, 2, . . . ,M . We then have, for some smooth function g(w),∮ 1

0

w−1−αg(w) dw =

∮ 1

0

w−1−αg2(w) dw + E2j(g), (28)

where g2(w) is the piecewise quadratic interpolation polynomial of g(w) and E2j(g) is the remainder term.
We have, [37]

Lemma 3.1. Let 0 < α < 1. Assume that g ∈ C3[0, 1]. Then, with j = 1, 2, . . . ,M ,∮ 1

0

w−1−αg(w) dw =

2j∑
k=0

αk,2jg
( k

2j

)
+R2j(g), (29)

where

(−α)(−α+ 1)(−α+ 2)(2j)−ααl,2j =



2−α(α+ 2), for l = 0,

(−α)22−α, for l = 1,

(−α)(−2−αα) + 1
2F0(2), for l = 2,

−F1(k), for l = 2k − 1, k = 2, 3, . . . , j,
1
2 (F2(k) + F0(k + 1)), for l = 2k, k = 2, 3, . . . , j − 1,
1
2F2(j), for l = 2j,

where

F0(k) =(2k − 1)(2k)
(

(2k)−α − (2(k − 1))−α
)

(−α+ 1)(−α+ 2)

−
(

(2k − 1) + 2k
)(

(2k)−α+1 − (2(k − 1))−α+1
)

(−α)(−α+ 2)

+
(

(2k)−α+2 − (2(k − 1))−α+2
)

(−α)(−α+ 1), (30)

F1(k) =(2k − 2)(2k)
(

(2k)−α − (2k − 2)−α
)

(−α+ 1)(−α+ 2)

−
(

(2k − 2) + 2k
)(

(2k)−α+1 − (2k − 2)−α+1
)

(−α)(−α+ 2)

+
(

(2k)−α+2 − (2k − 2)−α+2
)

(−α)(−α+ 1), (31)

and

F2(k) =(2k − 2)(2k − 1)
(

(2k)−α − (2k − 2)−α
)

(−α+ 1)(−α+ 2)

−
(

(2k − 2) + (2k − 1)
)(

(2k)−α+1 − (2k − 2)−α+1
)

(−α)(−α+ 2)

+
(

(2k)−α+2 − (2k − 2)−α+2
)

(−α)(−α+ 1). (32)
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Next we consider the discretization of (26). At the points t2j+1 = 2j+1
2m , j = 1, 2, . . . ,M − 1 we have

R
0 D

α
t x(t2j+1) =

1

Γ(−α)

∮ t2j+1

0

(t2j+1 − τ)−1−αx(τ) dτ

=
1

Γ(−α)

∫ t1

0

(t2j+1 − τ)−1−αx(τ) dτ

+
t−α2j+1

Γ(−α)

∮ 2j
2j+1

0

w−1−αx(t2j+1 − t2j+1w) dw.

Remark 3.1. Here we divided the integral
∮ t2j+1

0
into

∫ t1
0

and
∮ t2j+1

t1
. Similarly one may divide the integral∮ t2j+1

0
into

∫ t2j
0

and
∮ t2j+1

t2j
and obtain the similar weights.

Remark 3.2. In the expression of R
0 D

α
t x(t2j+1) above, the first integral

∫ t1
0

(t2j+1 − τ)−1−αx(τ) dτ, j ≥ 1
is the standard integral since the integrand has no singularity points on [0, t1]. But the second integral∮ 2j

2j+1

0 w−1−αx(t2j+1−t2j+1w) dw is the Hadamard finite-part integral since w−1−α has the strong singularity
at w = 0.

We replace the integral by a piecewise quadratic interpolation polynomial with the equispaced nodes
0, 1

2j+1 ,
2

2j+1 , . . . ,
2j

2j+1 , j = 1, 2, . . . ,M − 1. More precisely, we have, for some smooth function g(w),

∮ 2j
2j+1

0

w−1−αg(w) dw =

∮ 2j
2j+1

0

w−1−αg2(w) dw + E2j+1(g), (33)

where g2(w) is the piecewise quadratic interpolation polynomial of g(w) with the nodes 0, 1
2j+1 ,

2
2j+1 , . . . ,

2j
2j+1 , j =

1, 2, . . . ,M − 1 and E2j+1(g) is the remainder term.
We have, [37]

Lemma 3.2. Let 0 < α < 1. Assume that g ∈ C3[0, 1]. Then∮ 2j
2j+1

0

w−1−αg(w) dw =

2j∑
k=0

αk,2j+1g
( k

2j

)
+R2j+1(g), (34)

where αk,2j+1 = αk,2j , k = 1, 2, 3, . . . , 2j, j = 1, 2, . . . ,M − 1 and αk,2j are given in Lemma 3.1.

By using (27)-(29), we obtain the following approximation of the Riemann-Liouville fractional derivative
R
0 D

α
t x(t) at t = t2j , j = 1, 2, . . . ,M

R
0 D

α
t x(t2j) = ∆t−α

2j∑
k=0

wk,2jx(t2j−k) +R2j
2 , (35)

where R2j
2 = C∆t3−α

(
max0≤s≤1 |x′′′(s)|

)
= O(∆t3−α) [37] and the weights wk,2j , k = 0, 1, 2, . . . , 2j, j =

1, 2, . . . ,M satisfy

Γ(3− α)wk,2j = (−α)(−α+ 1)(−α+ 2)(2j)−ααk,2j , k = 0, 1, 2, . . . , 2j. (36)

Similarly, we have at t = t2j+1, j = 1, 2, . . . ,M − 1,

R
0 D

α
t x(t2j+1) =

1

Γ(−α)

∫ t1

0

(t2j+1 − s)−α−1 x(s) ds+ ∆t−α
2j∑
k=0

wk,2j+1x(t2j+1−k) +R2j+1
2 ,
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where wk,2j+1 = wk,2j , k = 0, 1, 2, . . . , 2j and R2j+1
2 = O(∆t3−α).

For the Caputo fractional derivative C0 D
α
t x(t) at t = t2j , j = 1, 2, . . . ,M , we have, noting that R0 D

α
t x(0) =

x(0)R0 D
α
t (1) = x(0)

Γ(1−α) t
−α,

C
0 D

α
t x(t2j) = R

0 D
α
t

(
x(t2j)− x(0)

)
= ∆t−α

2j∑
k=0

w̄k,2jx(t2j−k) +R2j
2 ,

where the weights, with k = 0, 1, 2, . . . , 2j − 1, j = 1, 2, . . . ,M ,

w̄k,2j = wk,2j , w̄2j,2j = w2j,2j −
(2j)−α

Γ(1− α)
. (37)

Similarly, we have at t = t2j+1, j=1, 2, . . . , M-1

C
0 D

α
t x(t2j+1) =

1

Γ(−α)

∫ t1

0

(t2j+1 − s)−α−1 x(s) ds+ ∆t−α
2j+1∑
k=0

w̄k,2j+1x(t2j+1−k) +R2j+1
2 ,

where, with k = 0, 1, 2, . . . , 2j, j = 1, 2, . . . ,M − 1,

w̄k,2j+1 = wk,2j , w̄2j+1,2j+1 = − (2j + 1)−α

Γ(1− α)
. (38)

The exact solution of (1)- (2) then satisfies, with l = 2, 3, . . . , 2M ,

w̄0,lx(tl)−∆tαβx(tl) = Il −
l∑

k=1

w̄k,lx(tl−k) + ∆tαf(tl)−∆tαRl2,

or

x(tl)− (w̄0,l)
−1(∆tαβ)x(tl) = (w̄0,l)

−1Il +

l∑
k=1

dk,lx(tl−k) + (w̄0,l)
−1∆tαf(tl)− (w̄0,l)

−1∆tαRl2, (39)

where dk,l = −w̄k,l/w̄0,l, k = 1, 2, . . . , l, l = 2, 3, . . . , 2M , where Il is defined by

Il =

{
0, l = 2j, j = 1, 2, . . . ,M,

− 1
Γ(−α)

∫ t1
0

(t2j+1 − s)−α−1 x(s) ds, l = 2j + 1, j = 1, 2, . . . ,M − 1,

Let xl ≈ x(tl), l = 0, 1, 2, . . . , 2M denote the approximate solution of x(tl). We define the following
numerical method to approximate the exact solutions in (39), with l = 2, 3, . . . , 2M ,

xl − (w̄0,l)
−1(∆tαβ)xl = (w̄0,l)

−1Ĩl +

l∑
k=1

dk,lxl−k + (w̄0,l)
−1∆tαf(tl). (40)

where Ĩl is some approximation of Il discussed below in (42). Here we assume that x0 = x0 and x1 will be
approximated below in (41).

To approximate x(t1) with the required accuracy O(∆t3−α) which will be the convergence order of our

numerical method (40), we divide the interval [0, t1] by the equispaced nodes 0 = t
(0)
1 < t

(1)
1 < · · · < t

(n1)
1 = t1

with step size ∆̃t such that ∆̃t
2−α
≈ ∆t3−α, where n1 is some positive integer. We then apply the numerical

method with the convergence order O(∆t2−α1 ) in [6] to get the approximate value x1 ≈ x(t1) such that

|x1 − x(t1)| = O(∆̃t
2−α

) = O(∆t3−α). (41)
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Remark 3.3. The computation of the approximate solution at the first grid point x1 is analogy to a clas-
sical technique for multistep methods for first-order differential equations where the starting values are also
computed via a lower order (one-step or multistep with a smaller number of steps) method with a sufficiently
small step size.

We also need to approximate the integral Il in (39) with the required accuracy O(∆t3) which we shall

use in (43). Let n2 be some positive integer, we divide the interval [0, t1] by the equispaced nodes 0 = t
(0)
1 <

t
(1)
1 < · · · < t

(n2)
1 = t1 with step size ∆t such that ∆t

2 ≈ ∆t4+α. We then apply the composite trapezoidal

quaduature rule on [0, t1] which has the convergence order O(∆t
2
). More precisely, we have, noting that

(t2j+1 − s)−α−1 ≤ (t3 − t1)−α−1 = (2∆t)−α−1, j = 1, 2, . . . ,M − 1,

|Il − Ĩl| =
∣∣∣ 1

Γ(−α)

∫ t1

0

(t2j+1 − s)−α−1 x(s) ds− 1

Γ(−α)

∫ t1

0

(t2j+1 − s)−α−1 x̃(s) ds
∣∣∣

= (∆t)−α−1O(∆t
2
) = O(∆t3), l = 2j + 1, j = 1, 2, . . . ,M − 1, (42)

where x̃(s) is the piecewise linear interpolation polynomial of x(s) on [0, t1], which implies that Il − Ĩl =
O(∆t3). We need this approximation below in (43).

Let el = xl − x(tl), l = 0, 1, . . . , 2M . Subtracting (39) from (40), we have, by (42),

el − (w̄0,l)
−1(∆tαβ)el =

l∑
k=1

dk,lel−k + (w̄0,l)
−1∆tαRl2, l = 2, 3, . . . , 2M, (43)

where e0 = 0 and e1 is approximated in (41) and dk,l = −w̄k,l/w̄0,l, k = 1, 2, . . . , l, l = 2, 3, . . . , 2M are
defined as in (37) and (38).

Denote

ēl = el − ηel−1, η =
d1,l

2
, l = 1, 2, 3, . . . , 2M.

We have, with l = 2, 3, . . . , 2M ,

ēl − (w̄0,l)
−1(∆tαβ)el = el − ηel−1 − (w̄0,l)

−1(∆tαβ)el

=

l−1∑
k=1

dk,lel−k + (w̄0,l)
−1∆tαRl2 − ηel−1

= η(el−1 − ηel−2) + (η2 + d2,l)el−2 + d3,lel−3 + · · ·+ dl−1,le1 + dl,le0 + (w̄0,l)
−1∆tαRl2

= η(el−1 − ηel−2) + (η2 + d2,l)(el−2 − ηel−3)

+ (η3 + d2,lη + d3,l)el−3 + d4,lel−4 + · · ·+ dl,l−1e1 + dl,le0 + (w̄0,l)
−1∆tαRl2

= . . .

= η(el−1 − ηel−2) + (η2 + d2,l)(el−2 − ηel−3)

+ (η3 + d2,lη + d3,l)(el−3 − ηel−4)

+ . . .

+ (ηl−2 + d2,lη
l−4 + · · ·+ dl−3,lη + dl−2,l)(e2 − ηe1)

+ (ηl−1 + d2,lη
l−3 + · · ·+ dl−2,lη + dl−1,l)(e1 − ηe0)

+ (ηl + d2,lη
l−2 + · · ·+ dl−1,lη + dl,l)e0 + (w̄0,l)

−1∆tαRl2.

Denote

d̄i,l := ηi +

i∑
j=2

ηi−jdj,l, i = 2, 3, . . . , l, l = 2, 3, . . . , 2M,
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we have, with d̄1,l = η,

ēl − (w̄0,l)
−1(∆tαβ)el =

l−1∑
k=1

d̄k,lēl−k + (w̄0,l)
−1∆tαRl2, l = 2, 3, . . . , 2M. (44)

Lemma 3.3. For 0 < α < 1, the coefficients in (44) satisfy, with l = 2, 3, . . . , 2M ,

0 < η =
d1,l

2
<

2

3
, (45)

d̄k,l > 0, k = 1, 2, . . . , l, (46)

η +

l∑
k=2

d̄k,l ≤ 1, (47)

d̄−1
l,l ≤ c0∆t−α, for some constant c0. (48)

Proof: We only consider the case with l = 2j, j = 1, 2, . . . ,M . Similarly we may consider the case
l = 2j + 1, j = 1, 2, . . . ,M − 1

We first estimate (45). By (67), we have

0 < η =
d1,l

2
<

2

3
.

The estimate (46) follows from
d̄1,l = η > 0,

and, by (70),

d̄2,l = η2 + d2,l =
1

4
(d1,l)

2 + d2,l > 0,

and, by (69)
d̄k,l = d̄k−1,lη + dl−k > 0, k = 3, 4, . . . , l, for l = 3, 4, . . . , 2M.

We next estimate (47). Let Sl = η +
∑l
k=2 d̄k,l, we have

Sl = η(1 + η + η2 + · · ·+ ηl−1) + d2,l(1 + η + η2 + · · ·+ ηl−2)

+ · · ·+ dl−2,l(1 + η + η2) + dl−1,l(1 + η) + dl,l

= η
1− ηl

1− η
+ d2,l

1− ηl−1

1− η
+ · · ·+ dl−2,l

1− η3

1− η
+ dl−1,l

1− η2

1− η
+ dl,l.

i.e.

(1− η)Sl = η(1− ηl) + d2,l(1− ηl−1) + d3,l + · · ·+ dl−1,l + dl,l

− d3,lη
l−2 − · · · − dl−2,lη

3 − dl−1,lη
2 − dl,lη.

By (70) and (71), we have

(1− η)Sl ≤ η(1− ηl) + d2,l(1− ηl−1) + d3,l + · · ·+ dl−1,l + dl,l

= (η + d2,l + d3,l + · · ·+ dl−1,l + dl,l)− ηl−1(η2 + d2,l)

≤ (1− η)− ηl−1(η2 + d2,l)

= (1− η)− ηl−1(
1

4
(d1,l)

2 + d2,l) < (1− η),

which implies (47).
11



Finally we estimate (48). For l = 2j, j = 1, 2, . . . ,M , we have

dl,l = − w̄l,l
w̄0,l

= −wl,l
w̄0,l

+
l−α

Γ(1− α)w̄0,l
>

t−αl
Γ(1− α)w̄0,l

∆tα,

which implies that d−1
l,l < c0∆t−α for some positive constant c0. Thus, by (70)

d̄l,l = ηl +

l∑
j=2

ηl−jdj,l = ηl−2(η2 + d2,l) + d3,lη
l−3 + · · ·+ dl−1,lη + dl,l > dl,l, (49)

which implies that d̄−1
l,l < d−1

l,l < c0∆t−α for some constant c0.
For l = 2j + 1, j = 1, 2, . . . ,M − 1, we have

dl,l = − w̄l,l
w̄0,l

=
l−α

Γ(1− α)w̄0,l
=

t−αl
Γ(1− α)w̄0,l

∆tα,

which implies that d−1
l,l < c0∆t−α for some positive constant c0. Thus (49) also holds in this case and

d̄−1
l,l < d−1

l,l < c0∆t−α for some constant c0. The proof of Lemma 3.3 is now complete.

�

We are now in the position to prove the following error estimates.

Theorem 3.4. Let x(t) and xl, l = 0, 1, . . . , 2M be the exact solution and the approximate solution of (39)
and (40), respectively. Assume that x ∈ C3[0, 1]. Further assume that x0 = x0 and there exists a constant
C such that

|x1 − x(t1)| ≤ C∆t3−α. (50)

Then there exists a constant C = C(α, f, β) such that

|xl − x(tl)| ≤ C∆t3−α, l = 2, 3, . . . , 2M.

Proof:
Multiplying 2ēl in both sides of (44), we have, denoting (u, v) = u · v, ∀u, v ∈ R, with l = 2, 3, . . . , 2M ,

(ēl, 2ēl)− (w̄0,l)
−1(∆tαβ)(el, 2ēl) =

l−1∑
k=1

d̄k,l(ēl−k, 2ēl) +
(
(w̄0,l)

−1∆tαRl2, 2ēl
)
, (51)

Note that
2(el, ēl) = (el, el) + (ēl, ēl)− η2(el−1, el−1), for l = 1, 2, . . . , 2M.

We have, with l = 2, 3, . . . , 2M ,

2|ēl|2 − (w̄0,l)
−1(∆tαβ)(el, el)− (w̄0,l)

−1(∆tαβ)(ēl, ēl) + (w̄0,l)
−1(∆tαβ)η2(el−1, el−1)

=

l−1∑
k=1

d̄k,l(ēl−k, 2ēl) +
(
(w̄0,l)

−1∆tαRl2, 2ēl
)
.

We write, with l = 2, 3, . . . , 2M ,(
(w̄0,l)

−1∆tαRl2, 2ēl
)

= d̄l,l
(
d̄−1
l,l (w̄0,l)

−1∆tαRl2, 2ēl
)
.
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By Cauchy-Schwarz inequality, we have, with l = 2, 3, . . . , 2M ,

2|ēl|2 − (w̄0,l)
−1(∆tαβ)|el|2 − (w̄0,l)

−1(∆tαβ)|ēl|2 + (w̄0,l)
−1(∆tαβ)η2|el−1|2

≤
l−1∑
k=1

d̄k,l
(
|ēl−k|2 + |ēl|2

)
+ d̄l,l

(
|d̄−1
l,l (w̄0,l)

−1∆tαRl2|2 + |ēl|2
)
.

=

l−1∑
k=1

d̄k,l|ēl−k|2 + d̄l,l
∣∣d̄−1
l,l (w̄0,l)

−1∆tαRl2 |̄2 +

l∑
k=1

d̄k,l|ēl|2.

By (47) and noting that d̄1,l = η and β < 0, we have

|ēl|2 − (w̄0,l)
−1(∆tαβ)|el|2 ≤d̄1,l|ēl−1|2 − (w̄0,l)

−1(∆tαβ)η2|el−1|2 + d̄2,l|ēl−2|2

+ · · ·+ d̄l−1,l|ē1|2 + d̄l,l|d̄−1
l,l (w̄0,l)

−1∆tαRl2|2.

By (45), we have, noting that β < 0 and d̄1,l = η,

|ēl|2 − (w̄0,l)
−1(∆tαβ)|el|2

≤ d̄1,l

(
|ēl−1|2 − (w̄0,l)

−1(∆tαβ)η|el−1|2
)

+ d̄2,l|ēl−2|2 + · · ·+ d̄l−1,l|ē1|2 + d̄l,l|d̄−1
l,l (w̄0,l)

−1∆tαRl2|2.
≤ d̄1,l

(
|ēl−1|2 − (w̄0,l)

−1(∆tαβ)|el−1|2
)

+ d̄2,l

(
|ēl−2|2 − (w̄0,l)

−1(∆tαβ)|el−2|2
)

+ · · ·+ d̄l−1,l

(
|ē1|2 − (w̄0,l)

−1(∆tαβ)|e1|2
)

+ d̄l,l|d̄−1
l,l (w̄0,l)

−1∆tαRl2|2.

Denote the norm, with l = 1, 2, . . . , 2M ,

|ēl|21 = |ēl|2 − (w̄0,l)
−1(∆tαβ)|el|2.

We then have, with l = 2, 3, . . . , 2M ,

|ēl|21 ≤ d̄1,l|ēl−1|21 + d̄2,l|ēl−2|21 + · · ·+ d̄l−1,l|ē1|21 + d̄l,l|d̄−1
l,l (w̄0,l)

−1∆tαRl2|2.

For l = 2, 3, . . . , 2M , we first show that

|ē1|21 ≤ d̄l,l max
2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2. (52)

In fact, noting that w̄0,l = 1
Γ(3−α)2−α(α + 2), l = 2, 3, . . . , 2M which is a constant independent on l =

2, 3, . . . , 2M , we have, by (50), with ē1 = e1 − ηe0 = e1,

(ē1, 2ē1)− (w̄0,l)
−1(∆tαβ)(e1, 2ē1) = (e1, 2e1)− (w̄0,l)

−1(∆tαβ)(e1, 2e1) = O(∆t3−α). (53)

Note that d̄l,l < 1 by (47), we have, by (48) and (50),

|ē1|21 = O(∆t3−α) ≤ d̄l,l max
2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2,

which is (52).
We next prove the following by the mathematical induction, with k = 2, 3, . . . , l, l = 2, 3, . . . , 2M ,

|ēk|21 ≤
(

1− d̄1,l − · · · − d̄k−1,l

)−1(
d̄l,l max

2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2). (54)
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Assume that (54) holds true for k = 1, 2, . . . , l − 1, l = 2, 3, . . . , 2M , we have, for k = l, by (46),

|ēl|21 ≤ d̄1,l

(
1− d̄1,l − · · · − d̄l−2,l

)−1
(
d̄l,l max

2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2)

+ d̄2,l

(
1− d̄1,l − · · · − d̄l−3,l

)−1
(
d̄l,l max

2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2)

+ . . . . . .

+ d̄l−2,l

(
1− d̄1,l

)−1
(
d̄l,l max

2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2)

+ d̄l−1,l (1)−1
(
d̄l,l max

2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2)

+ (1− d̄1,l − · · · − d̄l−1,l)
(
1− d̄1,l − · · · − d̄l−1,l

)−1
(
d̄l,l max

2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2)

≤
(
1− d̄1,l − · · · − d̄l−1,l

)−1
(
d̄l,l max

2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2).

By (46), we have, with l = 2, 3, . . . , 2M ,

|ēl|21 ≤
(
1− d̄1,l − · · · − d̄l−1,l

)−1
(
d̄l,l max

2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2),

which is (54).
By (47), we have, with l = 2, 3, . . . , 2M ,

|ēl|21 ≤
d̄l,l

1− d̄1,l − · · · − d̄l−1,l
max
2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2

≤ max
2≤s≤l

∣∣d̄−1
l,l (w̄0,l)

−1∆tαRs2
∣∣2 ≤ C max

2≤s≤l

∣∣Rs2∣∣2 ≤ C(∆t3−α)2,
which implies that

|ēl|1 ≤ C∆t3−α, l = 2, 3, . . . , 2M.

Further we have, by (45), with l = 2, 3, . . . , 2M ,

|el| = |ēl + ηel−1| ≤ |ēl|+ |ηel−1| ≤ C∆t3−α + |ηel−1|
≤ C∆t3−α + η

(
C∆t3−α + ηel−2|

)
≤ (1 + η)C∆t3−α + η2|el−2|

≤ . . . . . .

≤ (1 + η + η2 + . . . ηl)C∆t3−α ≤ 1

1− η
C∆t3−α ≤ C∆t3−α (55)

The proof of Theorem 3.4 is now complete.

�

4. Numerical simulations

In this section, we will consider two examples.

Example 4.1. Consider

C
0 D

α
t x(t) = βx(t) + f(t), t ∈ [0, 1], (56)

x(0) = x0, (57)
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where x0 = 0, 0 < α < 1, β = −1 and f(t) = Γ(4+γ)
Γ(4+γ−α) t

3+γ−α − βt3+γ , γ > 0. The exact solution is

x(t) = t3+γ .
The main purpose is to check the order of convergence of the numerical method with respect to the

fractional order α. For various choices of α ∈ (0, 1), we computed the errors at t = 1. We choose the step
size h = 1/(5× 2l), l = 1, 2, . . . , 7, i.e, we divided the interval [0, 1] into n = 1/h small intervals with nodes
0 = t0 < t1 < · · · < tn = 1. Then we compute the error e(tn) = |x(tn)− xn|. By Theorem 3.4, we have

|e(tn)| = |x(tn)− xn| ≤ Ch3−α, (58)

To observe the order of convergence we shall compute the error |e(tn)| at tn = 1 for the different values of
h. Denote |eh(tn)| the error at tn = 1 for the step size h. Let hl = h = 1/(5× 2l) for a fixed l = 1, 2, . . . , 7.
We then have

|ehl(tn)|
|ehl+1

(tn)|
≈
Ch3−α

l

Ch3−α
l+1

= 23−α,

which implies that the order of convergence satisfies 3 − α ≈ log2

(
|ehl (tn)|
|ehl+1

(tn)|

)
. In Table 1, we compute the

orders of convergence for the different values of α. The numerical results are consistent with the theoretical
results.

n ERC ( α = 0.5 ) ERC ( α = 0.75) ERC ( α = 0.25)
10
20 2.6676 2.4010 2.9229
40 2.6038 2.3313 2.8701
80 2.5664 2.2947 2.8395
160 2.5435 2.2748 2.8199
320 2.5291 2.2639 2.8064
640 2.5198 2.2578 2.7963

Table 1: Results at t = 1 for β = −1 and γ = 0.6

In Figure 1, we will plot the order of the convergence for α = 0.25. We have from (58)

log2(|e(tn)|) ≤ log2(C) + (3− α)log2(h).

Let y = log2(|e(tn)|) and x = log2(h). In Figure 1, we plot the function y = y(x) for the different values
of x = log2(h) where h = 1/(5 × 2l), l = 1, 2, . . . , 7. To observe the order of convergence, we also plot the
straight line y = (3 − α)x. We see that these two lines are almost parallel which means that the order of
convergence of the numerical method indeed is O(h3−α).

Example 4.2. Consider

C
0 D

α
t x(t) = βx(t) + f(t), t ∈ [0, 1], (59)

x(0) = x0, (60)

where x0 = 0, 0 < α < 1, β = −1 and f(t) = (t2 + 2t2−α/Γ(3 − α)) + (t3 + 3!t3−α/Γ(4 − α)). The exact
solution is x(t) = t2 + t3.

We use the same notation as in Example 4.1.
For various choices of α ∈ (0, 1), we computed the errors at t = 1. We choose the step size h =

1/(5× 2l), l = 1, 2, . . . , 7, i.e, we divided the interval [0, 1] into n = 1/h small intervals with nodes 0 = t0 <
t1 < · · · < tn = 1. Then we compute the error e(tn) = |x(tn) − xn|. In Table 2, we compute the orders of
convergence for the different values of α. The numerical results are consistent with the theoretical results.

15



−10 −9 −8 −7 −6 −5 −4 −3
−26

−24

−22

−20

−18

−16

−14

−12

−10

−8

log
2
(h)

lo
g 2(|

e(
t)

|)

The experimentally determined orders of convergence (EOC) at t=1

Figure 1: The experimentally determined orders of convergence (“EOC ”) at t = 1 in Example 4.1

n ERC ( α = 0.5 ) ERC ( α = 0.75) ERC ( α = 0.25)
10
20 1.8035 1.7855 3.1098
40 2.2424 2.0737 1.5696
80 2.3758 2.1694 2.3199
160 2.4324 2.2102 2.5172
320 2.4604 2.2296 2.6017
640 2.4756 2.2393 2.6467

Table 2: Results at t = 1 for β = −1

and f(t) = (t2 + 2t(2− α)/Γ(3− α)) + (t3 + 3!t3−α/Γ(4− α))

Let y = log2(|e(tn)|) and x = log2(h). In Figure 2, we consider α = 0.75 and we plot the function
y = y(x) for the different values of x = log2(h) where h = 1/(5 × 2l), l = 1, 2, . . . , 7. To observe the order
of convergence, we also plot the straight line y = (3− α)x. We see that these two lines are almost parallel
which means that the order of convergence of the numerical method indeed is O(h3−α).
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Figure 2: The experimentally determined orders of convergence (“EOC ”) at t = 1 in Example 4.2
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5. Appendix

In this Appendix, we will give two lemmas.

Lemma 5.1. Let 0 < α < 1. Let M be a positive integer defined before and let wk,2j , k = 0, 1, 2, . . . , 2j, j =
1, 2, . . . ,M be defined as in (35), we have

α22−α

Γ(3− α)
+

5− 6 ln 2

4αΓ(−α)
< w2,2j <

α22−α

Γ(3− α)
+
−4 + 10 ln 2

4αΓ(−α)
, (61)

w2l−1,2j < 0, w2l,2j < 0, l = 1, 2, . . . , j. (62)

Proof: We first show (61). The case j = 1 is trivial. We only consider the case for j = 2, 3, . . . ,M .
We have, by (30),

F0(k) = −(−α+ 2)(2k)−α+1 + 2(2k)−α+2 − 2(−α+ 1)(−α+ 2)(2k − 2)−α

− 3(−α+ 2)(2k − 2)−α+1 − 2(2k − 2)−α+2, k = 2, 3, . . . , j.

Denote

I(m) = −(−α+ 2)(m)−α+1 + 2(m)−α+2 − 2(−α+ 1)(−α+ 2)(m− 2)−α

− 3(−α+ 2)(m− 2)−α+1 − 2(m− 2)−α+2.

We see that F0(k) = I(m) with m = 2k, k = 2, 3, . . . , j. We now estimate I(m). After some tedious but
direct calculation, we have

I(m) = m−α+2
(
− (−α+ 2)

1

m
+ 2− 2(−α+ 1)(−α+ 2)

(
1− 2

m

)−α 1

m2

− 3(−α+ 2)
(

1− 2

m

)−α+1 1

m
− 2
(

1− 2

m

)−α+2)
= m−α+2

[
− (−α+ 2)

1

m
+ 2− 2(−α+ 1)(−α+ 2)

1

m2

(
1 + (−α)

(
− 2

m

)
+

(−α)(−α− 1)

2!

(
− 2

m

)2

+
(−α)(−α− 1)(−α− 2)

3!

(
− 2

m

)3

+ . . .
)
− 3(−α+ 2)

1

m

(
1 + (−α+ 1)

(
− 2

m

)
+

(−α+ 1)(−α)

2!

(
− 2

m

)2

+
(−α+ 1)(−α)(−α− 1)

3!

(
− 2

m

)3

+ . . .
)
− 2
(

1 + (−α+ 2)
(
− 2

m

)
+

(−α+ 2)(−α+ 1)

2!

(
− 2

m

)2

+
(−α+ 2)(−α+ 1)(−α)

3!

(
− 2

m

)3

+
(−α+ 2)(−α+ 1)(−α)(−α− 1)

4!

(
− 2

m

)4

+ . . . )
)]

=
(−α+ 2)(−α+ 1)(−α)

mα+1

∞∑
k=1

k2 · 2k+1

(k + 2)!

(α+ 1)(α+ 2) . . . (α+ k − 1)

mk−1
,

which implies that I(m) < 0 and therefore

F0(k) < 0, k = 2, 3, . . . , j, j = 2, 3, . . . ,M. (63)
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In particular, for k = 2, we have

5− 6 ln 2

4αΓ(−α)
<

1
2F0(2)

Γ(3− α)
<
−4 + 10 ln 2

4αΓ(−α)
,

which implies that, noting that w2,2j = α22−α

Γ(3−α) +
1
2F0(2)

Γ(3−α) , j = 2, 3, . . . ,M ,

α22−α

Γ(3− α)
+

5− 6 ln 2

4αΓ(−α)
< w2,2j <

α22−α

Γ(3− α)
+
−4 + 10 ln 2

4αΓ(−α)
,

which is (61).
We next prove (62). For the weights w2l−1,2j , l = 2, 3, . . . , j, we have, by (31),

Γ(3− α)w2l−1,2j = 2
(

(2l − 2)−α+2 − (2l)−α+2
)

+ 2(−α+ 2)
(

(2l − 2)−α+1 + (2l)−α+1
)
.

Denote

I(m) =
(

(m− 2)−α+2 − (m)−α+2
)

+ (−α+ 2)
(

(m− 2)−α+1 + (m)−α+1
)
.

We see that Γ(3 − α)w2l−1,2j = 2I(m) with m = 2l. We now estimate I(m). After some tedious but
direct calculation, we have

I(m) = m−α+2
(
− 1 + (−α+ 2)

1

m
+
(

1− 2

m

)−α+2

+ (−α+ 2)
(

1− 2

m

)−α+1 1

m

)
= m−α+2

( (−α+ 2)(−α+ 1)(−α)

m3

(
− 23

3!
+

22

2!

)
+

(−α+ 2)(−α+ 1)(−α)(−α− 1)

m4

(24

4!
− 23

3!

)
+

(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)

m5

(
− 25

5!
+

24

4!

)
+ . . .

+
(−α+ 2)(−α+ 1) . . . (−α− k + 3)

mk

(
(−1)k

2k

k!
+ (−1)k−1 2k−1

(k − 1)!

)
+ . . .

)
=

(−α+ 2)(−α+ 1)(−α)

m1+α

(2

3
+

∞∑
k=1

(α+ 1)(α+ 2) . . . (α+ k)

mk

k + 1

(k + 3)!
2k+2

)
,

which implies that w2l−1,2j < 0, l = 1, 2, . . . , j, j = 2, 3, . . . ,M .
We now consider the weights w2l,2j , l = 1, 2, . . . , j − 1, j = 2, 3, . . . ,M . Here we only consider the case

for l ≥ 2. The case l = 1 can be considered similarly.
we have, by (30) and (32),

Γ(3− α)w2l,2j = −3(−α+ 2)(2l)−α+1 +
(

(2l + 2)−α+2 − (2l − 2)−α+2
)

− 1

2
(−α+ 2)

(
(2l + 2)−α+1 + (2l − 2)−α+1

)
Denote

I(m) = −3(−α+ 2)(m)−α+1 − (m− 2)−α+2 − 1

2
(−α+ 2)(m− 2)−α+1

+ (m+ 2)−α+2 − 1

2
(−α+ 2)(m+ 2)−α+1

(64)

We see that Γ(3− α)w2l,2j = I(m) with m = 2l, l ≥ 2. We now estimate I(m). After some tedious but
direct calculation, we have
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I(m) = m−α+2
(
− 3(−α+ 2)

1

m
−
(

1− 2

m

)−α+2

− 1

2
(−α+ 2)

(
1− 2

m

)−α+1 1

m

+
(

1 +
2

m

)−α+2

− 1

2
(−α+ 2)

(
1 +

2

m

)−α+1 1

m

)
= m−α+2

( (−α+ 2)(−α+ 1)(−α)

m3

(23 · 2
3!
− 22

2!

)
+

(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)

m5

(25 · 2
5!
− 24

4!

)
+

(−α+ 2)(−α+ 1)(−α)(−α− 1)(−α− 2)(−α− 3)(−α− 4)

m7

(27 · 2
7!
− 26

6!

)
+ . . .

)
=

(−α+ 2)(−α+ 1)(−α)

m1+α

(2

3
−
∞∑
k=1

(α+ 1)(α+ 2) . . . (α+ 2k)

m2k(2k + 1)!

2k − 1

(2k + 2)(2k + 3)
22k+2

)
Note that, with m ≥ 4,

∞∑
k=1

(α+ 1)(α+ 2) . . . (α+ 2k)

m2k(2k + 1)!

2k − 1

(2k + 2)(2k + 3)
22k+2

≤
∞∑
k=1

(1 + 1)(α+ 2) . . . (1 + 2k)

m2k(2k + 1)!

2k − 1

(2k + 2)(2k + 3)
22k+2 ≤

∞∑
k=1

( 2

m

)2k 4(2k − 1)

(2k + 2)(2k + 3)

≤
∞∑
k=1

( 2

m

)2k

· 1 =
( 2
m )2

1− ( 2
m )2

=
4

m2 − 4
≤ 4

42 − 4
=

1

3
<

2

3
. (65)

We have I(m) < 0 for m ≥ 4 which implies that w2l,2j < 0, l = 2, 3, . . . , j − 1.
Finally for the weights w2j,2j , j = 1, 2, . . . ,M , we have

Γ(3− α)w2j,2j = F2(j) = 2(−α+ 1)(−α+ 2)(2j)−α − 3(−α+ 2)(2j)−α+1 + 2(2j)−α+2

− (−α+ 2)(2j − 2)−α+1 − 2(2j − 2)−α+2

Denote

I(m) = 2(−α+ 1)(−α+ 2)(m)−α − 3(−α+ 2)(m)−α+1 + 2(m)−α+2

− (−α+ 2)(m− 2)−α+1 − 2(m− 2)−α+2

(66)

We see that 2Γ(3 − α)w2j,2j = I(m) with m = 2j, j = 1, 2, . . . ,M . We now estimate I(m) for m ≥ 4.
Similarly we can consider the case for m = 2. After some tedious but direct calculation, we have
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I(m) = m−α+2
(

2(−α+ 1)(−α+ 2)
1

m2
− 3(−α+ 2)

1

m
+ 2

− (−α+ 2)
(

1− 2

m

)−α+1 1

m
− 2
(

1− 2

m

)−α+2)
= m−α+2

[
2(−α+ 1)(−α+ 2)

1

m2
− 3(−α+ 2)

1

m
+ 2

−
(
− α+ 2)

1

m
(1 + (−α+ 1)

(
− 2

m

)
+

(−α+ 1)(−α)

2!

(
− 2

m

)2

+
(−α+ 1)(−α)(−α− 1)

3!

(
− 2

m

)3

+ . . .
)

− 2
(

1 + (−α+ 2)
(
− 2

m

)
+

(−α+ 2)(−α+ 1)

2!

(
− 2

m

)2

+
(−α+ 2)(−α+ 1)(−α)

3!

(
− 2

m

)3

+ . . .
)]

=
(−α+ 2)(−α+ 1)(−α)

m1+α

(2

3
−
∞∑
k=1

(α+ 1)(α+ 2) . . . (α+ k + 1)

mk+1

k · 2k+3

(k + 4)!

)
Following the arguments in (65), we may show that, with m ≥ 4,

∞∑
k=1

(α+ 1)(α+ 2) . . . (α+ k + 1)

mk+1

k · 2k+3

(k + 4)!
≤ 2

3
.

Thus we proved w2j,2j < 0, j = 2, 3, . . . ,M . The proof of Lemma 5.1 is complete.

�

Lemma 5.2. Let 0 < α < 1, Let dk,l, k = 1, 2, . . . , l, l = 2, 3, . . . , 2M be defined as in (43), we have

0 < d1,l <
4

3
, (67)

− 1

3
< d2,l <

5

2
− 3 ln 2, (68)

dk,l > 0, for k = 3, 4, . . . , l, with l = 3, 4, . . . , 2M, (69)

1

4
(d1,l)

2 + d2,l > 0, (70)

l∑
k=1

dk,l ≤ 1. (71)

Proof: We only consider the case for l = 2j, j = 1, 2, . . . ,M . We can consider the case for l = 2j+1, j =
1, 2, . . . ,M − 1 similarly.

For (67), we have, with l = 2, 3, . . . , 2M ,

d1,l = − w̄1,l

w̄0,l
= −Γ(3− α)w̄1,l

Γ(3− α)w̄0,l
= − (−α)22−α

2−α(2 + α)
=

4α

2 + α
= 4− 8

2 + α
,

which implies that 0 < d1,l <
4
3 since 0 < α < 1.

We now prove (68). The case l = 2 or l = 3 is trivial. Here we only consider the case for l = 4, 5, . . . , 2M .

Note that w̄0,l = 2−α(α+2)
Γ(3−α) . We have, by (61),

α22−α

Γ(3− α)
+

5− 6 ln 2

4αΓ(−α)
< w̄2,l <

α22−α

Γ(3− α)
+
−4 + 10 ln 2

4αΓ(−α)
, for l = 4, 5, . . . , 2M.
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Thus, noting that d2,l = − w̄2,l

w̄0,l
, with l = 4, 5, . . . , 2M ,

− α2

α+ 2
− (−4 + 10 ln 2)Γ(3− α)

4αΓ(−α)(α+ 2)
< d2,l < −

α2

α+ 2
− (5− 6 ln 2)Γ(3− α)

4αΓ(−α)(α+ 2)
,

or

− α2

α+ 2
+

(−4 + 10 ln 2)(2− α)(1− α)α

2α(α+ 2)
< d2,l < −

α2

α+ 2
+

(5− 6 ln 2)(2− α)(1− α)α

2α(α+ 2)
.

Noting that, for 0 < α < 1,

−1

3
< − α2

α+ 2
< 0,

(−4 + 10 ln 2)(2− α)(1− α)α

2α(α+ 2)
> 0,

(2− α)(1− α)α

2α(α+ 2)
<

1

2
,

we get

−1

3
< d2,l <

5

2
− 3 ln 2, for l = 4, 5, . . . , 2M,

which is (68).
We now consider (69). The case for l = 3 is trivial. We here only consider the case for l = 4, 5, . . . , 2M .

By (62), we have, noting that Γ(3− α)w̄0,l = 2−α(2 + α) > 0,

dk,l = − w̄k,l
w̄0,l

= −Γ(3− α)w̄k,l
Γ(3− α)w̄0,l

> 0, for k = 3, 4, . . . , l, l = 4, 5, . . . , 2M.

For (70), we have, by (63), with l = 2, 3, . . . , 2M ,

1

4
(d1,l)

2 + d2,l =
1

4

(
4α

2 + α

)2

− α2

2 + α
−

1
2F0(2)

2−α(2 + α)

=
4α3 + 7α2

(2 + α)2
+

(
−

1
2F0(2)

2−α(2 + α)

)
> 0.

Finally we estimate (71). For l = 2j, j = 1, 2, . . . ,M , we have

C
0 D

α
t (x(t2j)) = R

0 D
α
t (x(t2j)− x(0)) = ∆t−α

2j∑
k=0

w̄k,2jx(t2j−k) + C∆t3−α
(

max
0≤s≤1

|f ′′′(s)|
)
.

Let x(t) = 1, we get

∆t−α
2j∑
k=0

w̄k,2j = 0,

which implies that
w̄0,2j + w̄1,2j + · · ·+ w̄2j,2j = 0,

or
d1,2j + d2,2j + · · ·+ d2j−1,2j + d2j,2j = 1.

Similarly in the case l = 2j + 1, j = 1, 2, . . . ,M − 1, we have, by (37) and (38),

w̄0,2j+1 + w̄1,2j+1 + · · ·+ w̄2j+1,2j+1

= w̄0,2j + w̄1,2j + · · ·+ w̄2j,2j +
( (2j)−α

Γ(1− α)
− (2j + 1)−α

Γ(1− α)

)
≥ w̄0,2j + w̄1,2j + · · ·+ w̄2j,2j = 0,

which implies that, with l = 2j + 1, j = 1, 2, . . . ,M − 1,

d1,l + d2,l + · · ·+ dl−1,l + dl,l < 1.

Together these estimates complete the proof of Lemma 5.2.

�
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