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Abstract

In this paper we consider scalar linear periodic delay differential
equations of the form

x′(t) =
m

∑

j=0

bj(t)x(t − jw), x(t) = φ(t) for t ∈ [0,mw), t ≥ mw (†)

where bj , j = 0, ...,m are continuous periodic functions with period
w. We summarise a theoretical treatment that analyses whether the
equation has small solutions. We consider discrete equations that
arise when a numerical method with fixed step-size is applied to ap-
proximate the solution to (†) and we develop a corresponding theory.
Our results show that small solutions can be detected reliably by the
numerical scheme. We conclude with some numerical examples.

Keywords: delay differential equations, small solutions, super-exponential
solutions, numerical methods

1 Introduction

The analysis of delay differential equations of the form

x′(t) =

m
∑

j=0

bj(t)x(t − jw), x(t) = φ(t) for t ∈ [0, mw), t ≥ mw (1)
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2 N. J. FORD AND P. M. LUMB

has become increasingly important in recent years (see, for example, [1, 2,
10]). It is known that, whereas a first order ordinary differential equation
represents a 1-dimensional problem, a delay differential equation of the form
(1) represents an infinite dimensional system, even in the case m = 1. We
can see this by considering the nature of the initial data required in each case
to specify a unique solution: for a first order ordinary differential equation,
it is sufficient to specify a single initial value (for example the value of x(0))
to define a unique solution. However in the case of the delay equation (1)
one would need to specify the solution over an initial interval of length mw.

This infinite dimensionality of the delay differential equation brings with
it a far richer range of possible dynamical behaviour than would be the case
for an ordinary differential equation (even of higher order). The solutions of
delay equations exhibit behaviour that extends beyond phenomena that we
see in solutions of ordinary differential equations.

In this paper we focus on so-called small (or super-exponential) solutions.
These are solutions x that satisfy x(t)est → 0 as t → ∞ for every s ∈ R.
They are important both from an analytical viewpoint and for mathematical
modellers: if an equation has non-trivial (not identically zero) small solutions
then the solution space is not spanned by the set of eigenvectors and gener-
alised eigenvectors of the solution map (see for example [10, 14, 15, 18]). This
means, for example, that possibly important features of the true solutions
would be lost if one attempted a series expansion in terms of eigenfunc-
tions and generalised eigenfunctions. This analytical property then implies
that parameter estimation problems may be improperly posed, and so the
detection of small solutions, when they are present, is a key objective (see
[3, 10, 11, 14, 16, 17]). Unfortunately, the detection of small solutions by
analytical methods is, in general, a difficult and incompletely solved problem
and one would like to develop alternative methods if possible.

The problem has been solved quite effectively for periodic single-term
nonautonomous delay equations. In our previous work (see [5, 6, 8, 9]) we
showed that the use of a simple numerical scheme with fixed step length yields
a finite dimensional solution map operator for the numerical approximation
of a single term delay equation. One can then show that, as the step length
of the numerical scheme is reduced to zero, the eigenspectra of the discrete
operators behave in characteristically different ways according to whether or
not small solutions are present in the underlying infinite dimensional system
(see [5, 6, 8, 9] for more details).

Here we extend our investigations to scalar linear periodic delay equations
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of the form (1) where bj , j = 0, ..., m, are continuous periodic functions with
period w. We will assume that the zeros of bm are isolated. We begin this
paper by developing the necessary theoretical results that will underpin our
approach and we conclude with a series of illustrative numerical examples.

2 Mathematical preliminaries

In order to gain a proper understanding of the concept of small solutions,
it is helpful to start by reviewing briefly the analysis for the single term
autonomous linear equation

x′(t) = ax(t − 1). (2)

The range of dynamical behaviour exhibited by members of the solution set
is determined by the solution set Λ of the characteristic quasi-polynomial

λeλ = a. (3)

Remark 2.1 The equation (3) is obtained from (2) either by solving using
Laplace transforms, or by substitution of the trial solution x(t) = αeλt.

One can express any solution of (2) as a linear combination of the functions
eλt : λ ∈ Λ. Thus x(t) =

∑

λ∈Λ αλe
λt. The coefficients αλ in the linear

combination are determined by the initial conditions (initial function) and
the dominant dynamical behaviour, as t → ∞ of a particular solution will be
determined by the value of λ with αλ 6= 0 which lies furthest to the right in
the complex plane. Thus, not all solutions to (2) will have the same dominant
behaviour as t → ∞.

The solutions (which we shall call eigenvalues) to (3) all lie on a single
trajectory in C and one can also predict how they will be distributed along
the trajectory:

Lemma 2.1 For the equation (2), all the characteristic roots λ = x + iy lie
on the curve

x = −y cot(y) (4)

and also satisfy

a =
−yex

sin(y)
(5)
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This result can be established by substituting λ = x + iy in (3). (5) implies
that, for each fixed value of a there will be precisely 2 values of λ for each
2π variation in y. This means, in turn, that the eigenvalues are isolated and
do not have a limit point.

Remark 2.2 It follows from this discussion that every non-zero solution of
(2) will have a dominant eigenfunction (of the form eλt (or pair of eigenfunc-
tions eλt and eλ̄t) for some λ ∈ Λ) for which αλ and/or αλ̄ is non-zero. This
determines the exponential growth or decay rate of the particular solution.
Hence there can be no non-zero small solutions to (2).

Small solutions cannot arise with autonomous equations of the form (2).
In fact, one can go further. For non-autonomous periodic delay equations of
the form

x′(t) = b(t)x(t − 1), where b(t + 1) = b(t) (6)

we have the following lemma (see [8]):

Lemma 2.2 The equation (6) has no small solutions if the function b is of
constant sign. In this case (6) is equivalent to an equation of the form (2).

Remark 2.3 The equivalence of the two equations is discussed in more detail

in [8]. One makes the substitution x(t) = z(σ(t)) where σ(t) =
R t

0
b(α)dα

R 1

0
b(α)dα

. It

follows that z′(σ) = βz(σ − τ).

The above discussion provides the key to the characterisation of small
solutions by numerical techniques. We now know that, if the equation (6)
has no small solutions then the eigenvalues of its solution operator must lie
on a single trajectory in the Argand diagram. Thus, if the eigenvalues do not
lie on a single trajectory then it follows that the equation must have small
solutions.

As we have seen, even for the autonomous linear equation, one needs
to solve a quasi-polynomial in order to find the eigenvalues. For the non-
autonomous equation, the problem is even harder. Therefore we employ a
numerical scheme to approximate the eigenvalues of (6). In doing this, we are
using a finite dimensional approximaion of the infinite dimensional solution
operator and therefore one might question the validity of the approach.The
justification is provided by the following result from [4]:
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Theorem 2.3 Let the parameter value α = α0 be fixed and let z0 = x0 + iy0

be a characteristic root of equation (2). With h > 0 (chosen so that h = 1
m

with m some positive integer, as before) we apply a strongly stable linear
multistep method (ρ, σ) of order p ≥ 1 to (2) to yield a discrete equation that
has m characteristic values. Now let zh = xh + iyh be such that z∗h = ezh/m

is a characteristic value of the discrete equation for which |ez0 − (z∗h)
m| is

minimised. Then |ez0 − (z∗h)
m| = O(hp) as h → 0.

Thus, we have a characterisation of non-autonomous single-term periodic
delay differential equations that can be summarised in the following corollary:

Corollary 2.1 For a sequence of steplengths hi = 1
Ni

→ 0 apply the trape-
zoidal rule (for example) to equation (6) and calculate the eigenvalues of
the resulting operator. It is sufficient for the existence of small solutions to
equation (6) that the eigenvalues lie on more than one trajectory.

This result forms the mathematical basis for our paper [7] in which we de-
veloped an automated system for the detection of small solutions in single
term periodic equations.

Remark 2.4 Notice that the above discussion also gives a characterisation
for an equation of the form

y′(t) = b(t)y(t − d), b(t + 1) = b(t), d ∈ N (7)

to have small solutions.

3 Multi-term equations and the Floquet the-

ory

In this section we develop similar results to those of the previous section for
multi-term equations of the form (1). Our aim is to give a numerical char-
acterisation theorem of a similar form to the one for single-term equations.
We begin by developing some basic Floquet theory.

Non-zero solutions of equation (1) which are such that x(t + w) ≡ λ̃x(t),
−∞ < t < ∞, are known as Floquet solutions (see [13]). The λ̃ are known
as the characteristic multipliers. These solutions can be represented in the
form x(t) = eµtp(t) where p(t + w) = p(t) and λ̃ = eµw.
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If X(t) is a Floquet type solution of equation (1) then it satisfies

X ′(t) =
m

∑

j=0

bj(t)X(t − jw) (8)

with
X(t) = eµtp(t) where p(t + w) = p(t). (9)

This expression for X satisfies

X(t − jw) = λ̃m−jX(t − mw) with λ̃ = eµω, (10)

and

X ′(t) =
m

∑

j=0

λ̃m−jbj(t)X(t − mw). (11)

We can summarise this in the following Lemma:

Lemma 3.1 If X is a Floquet solution of the multi-term equation (1) then
X satisfies a single-term delay equation (with delay mw, the maximum delay
from the multi-term equation.)

Next we need to show that it is sufficient for our purposes (the detection
of small solutions) to concentrate on Floquet solutions. Once we have estab-
lished this fact, we can rely on the previous analysis for single-term equations
to provide a characterisation of equations with small solutions. Fortunately,
there is an established result ([10] Chapter 8, Theorem 3.5):

Theorem 3.2 The Floquet solutions of a periodic delay differential equation
span the solution space if and only if the equation has no small solutions.

Remark 3.1 Of course, it would be inconvenient to have to undertake a sep-
arate Floquet analysis for each multi-term equation to derive an appropriate
single-term equation for analysis. However, when an equation has small so-
lutions, these will generate Floquet solutions with λ̃ = 0 for which the single
term equation is simply

x′(t) = bm(t)x(t − mw). (12)

It follows from this observation (see also [10], Chapter 8, Theorem 3.3) that
one can prove the following:
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Theorem 3.3 1. Suppose that the zeros of bm are isolated, then equation
(1) has no small solutions if and only if bm has no sign change.

2. Equation (1) has small solutions if and only if (12) has small solutions.

This leads to our detection algorithm:

Algorithm 3.1 For a multi-term equation of the form (1) construct the sin-
gle term equation (12). For a sequence of steplengths hi = 1

Ni
→ 0 apply the

trapezoidal rule to (12) and calculate the eigenvalues of the resulting opera-
tor. It is sufficient for the existence of small solutions to equation (1) that
the eigenvalues lie on more than one trajectory.

4 Numerical Experiments

We begin by giving brief details of the numerical approach. We write down
the numerical scheme for solving (12) using the trapezoidal rule with fixed
step length h = mw

N
in the form

Xn+1 = Xn +
h

2
(bm,n+1−NXn+1−N + bm,n−NXn−N). (13)

Here Xn ≈ x(nh), bm,n = bm(nh). We note that, for each fixed value of m,
as n varies, {bm,n} is a periodic sequence of period N .

Now we construct the companion matrix An corresponding to the method
and calculate C =

∏N
i=1 AN−i which represents a discrete analogue of the

period map of the solution operator for (12). It is the eigenvalues of the
matrix C that we shall calculate. These will be marked on the figures with
′+′.

For reference purposes in our diagram, we also calculate the matrix C̃

which corresponds to the autonomous system formed by replacing b(t) by

the constant
R mw

0
b(s)ds

mw
. This time, the eigenvalues will be marked on the

figures with ′∗′.

4.1 Numerical Results

We illustrate our approach based on some simple equations of the form (1).
We display the eigenspectrum arising from the discretisation of equation
x′(t) = bm(t)x(t − mw) using the trapezium rule.
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Example 4.1 We consider two examples of equation (1) with b0(t) ≡ 0, w =
1, m = 2. In this case if b2(t) changes sign on [0, 1] then there can be small
solutions. Our theory tells us that, whereas the eigenvalues marked by ′∗′ will
always follow a single trajectory, those marked by ′+′ may follow more than
one trajectory, and this will imply the existence of small solutions.

The left-hand eigenspectrum of Figure 1. arises from (1) with b1(t) =
sin2πt+ c, b2(t) = sin2πt+1.8 and the right-hand eigenspectrum arises from
(1) with b1(t) = sin2πt + c, b2(t) = sin2πt + 0.3. As expected we observe
additional eigenspectra in the case when b2(t) changes sign.

−16 −14 −12 −10 −8 −6 −4

x 10
−4

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

−6 −4 −2 0 2 4 6

x 10
−3

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Figure 1.: Left: b2(t) does not change sign Right: b2(t) changes sign

Example 4.2 We now give two eigenspectra resulting from equation (1) with
w = 1, m = 4 and b0(t) 6≡ 0. (a) b0(t) = sin 2πt + 0.6, b1(t) = sin 2πt +
0.3, b2(t) = sin 2πt + 0.2, b3(t) = sin 2πt + 0.7, b4(t) = sin 2πt + 1.4. (b)
b0(t) = sin 2πt + 1.8, b1(t) = sin 2πt + 1.3, b2(t) = sin 2πt + 1.2, b3(t) =
sin 2πt + 1.7, b4(t) = sin 2πt + 0.4. As expected we observe additional trajec-
tories in the case when b4(t) changes sign.

5 Direct discretisation of (1)

Our long-term goal is to be able to use the numerical approach for the de-
termination of whether or not a delay equation has small solutions without
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−2.2 −2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4

x 10
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0

0.02

0.04
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−10 −8 −6 −4 −2 0 2 4 6 8

x 10
−3

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Figure 2.: Left: b4(t) does not change sign Right: b4(t) changes sign

detailed analytical theory being known. This will be important because of
the slow progress towards obtaining analytical results for more complicated
delay equations. Therefore, although the results of the previous section are
interesting, it would be more useful to be able to detect small solutions by
direct application of our numerical scheme to the delay equation. In this
section, we consider the question of whether such a direct application of the
numerical techniques will provide a reliable result.

5.1 The Numerical Approach

We need to introduce some notation: we let xn = x(nh) and bi,j = bi(jh)
as before. We continue to use numerical methods with constant step size
h = 1

N
= mω

N∗
. We introduce D1 ∈ R1×(N+1), Dj ∈ R1×N for j = 2, 3, ..., m−1,

Dm ∈ R1×(N−1), D(n) ∈ R1×mN and A(n) ∈ R(mN+1)×(mN+1) defined by

1. D1 =
(

(2+hb0,n)

(2−hb0,n+1)
0 . . . 0 h

(2−hb0,n+1)
b1,n+1

h
(2−hb0,n+1)

b1,n

)

2. Dj =
(

0 . . . . . . 0 h
(2−hb0,n+1)

bj,n+1
h

(2−hb0,n+1)
bj,n

)

for j = 2, 3, ..., m − 1.

3. Dm =
(

0 . . . . . . 0 h
(2−hb0,n+1)

bm,n+1

)
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4. D(n) =
(

D1 D2 D3 . . . . . . Dm

)

5. A(n) =

(

D(n) h
(2−hb0,n+1)

bm,n

I 0

)

6. yn =
(

xn xn−1 . . . xn−N xn−1−N . . . xn−2N xn−1−2N . . . xn−mN

)T

Discretisation of (1) using the trapezium rule yields

xn+1 = xn +
h

2

m
∑

j=0

(bj,nxn−jN + bj,n+1xn+1−jN) . (14)

which can be written in the form

yn+1 = A(n)yn (15)

It follows that y(t + mω) ≈ yn+N∗ = Cyn where C =
∏N∗

−1
i=0 A(n + i).

For the single term delay equation, we considered the autonomous prob-
lem arising from the replacement of b1(t), in the non-autonomous problem,

by
∫ 1

0
b1(t)dt. We then compared the eigenspectrum arising from the au-

tonomous problem with that from the non-autonomous problem.

Here we consider the autonomous problem in which we replace each bi(t)
with 1

ω

∫ ω

0
bi(t)dt and we use this to create a constant matrix A.

Remark 5.1 Our motivation for this approach arises from the fact that the

characteristic equation for the Floquet exponents is det
(

eµω − ew
Pm

j=0
b̂je−jµω

)

=

0 where b̂j = 1
ω

∫ ω

0
bj(s)ds, for j = 0, 1, ..., m. The characteristic matrix for

the exponents may be taken to be µ =
∑m

j=0 b̂je
−jωµ, which is the character-

istic matrix for the autonomous equation x′(t) =
∑m

j=0 b̂jx(t − jω) (see page
249 of [10]).

By analogy with the previous approach, we are then able to compare the
eigenvalues of C with the eigenvalues of AN∗

. We want to show that, as be-
fore, additional eigenvalue trajectories imply the existence of small solutions.
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5.2 A Revised Characterisation of Small Solutions

To understand the results of the direct application of the numerical scheme
to the multi-term equation (1) we shall find it helpful to undertake a discrete
Floquet analysis.

The discrete scheme corresponding to (8) (using the trapezium rule, as
usual) is

Xn+1 = Xn +
h

2

m
∑

j=0

(bj,nXn−jN + bj,n+1Xn+1−jN) (16)

and, for Floquet solutions we let

Xn = eµnhpn = Λnpn where Λ = eµh and ΛN = λ. (17)

so that
Xn = λXn−N = λmXn−mN (18)

and we put
pn = pn−N . (19)

We can use (18) to write (16) as

Xn+1 = Xn +
h

2

m
∑

j=0

λm−j (bj,nXn−mN + bj,n+1Xn+1−mN) . (20)

The conclusion of this analysis is more significant than is at first evident.
Clearly, for each of the Floquet exponents λ, we have reduced the discrete
problem to one with a single delay of mw just as we did in the continuous
case. More significantly, (20) is the discretisation of (11) using the trapezium
rule. Therefore the analysis shows that one can undertake the discretisation
either before or after the Floquet analysis without affecting the outcome.
This is summarised in Figure 3..

The Floquet theory now leads to a simple, and possibly more intuitive,
characterisation of small solutions to multi-term delay equations.

Assume that equation (1) does not possess small solutions. By Theorem
3.1 we know that the Floquet solutions span the solution space of (1). In
other words, the characteristic roots of (1) will be approximated by roots
of equations of the form (20) for various values of λ. The absence of small
solutions will lead, for each fixed λ, to a trajectory of the general form given
in Lemma 2.1.
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Multi-term continuous problem

Single term discrete problem

Multi-term discrete problem Single-term continuous problem

FloquetDiscretise

DiscretiseFloquet

B
B
B
BBN

�
�

�
��

B
B
B
BBN

�
�

�
��

Figure 3.: Rival approaches to the problem

Thus, in the absence of small solutions, we would expect to find that the
characteristic roots of (1) will lie along multiple trajectories of the same gen-
eral shape as those we met for single term equations without small solutions.
Therefore the appearance of additional trajectories close to the real-axis may
be taken to imply the existence of small solutions. We give this formally:

Algorithm 5.1 For a multiterm equation of the form (1) apply the trape-
zoidal rule with a sequence of step lengths hi = 1

Ni
→ 0 and calculate the

eigenvalues of the resulting operator. It is sufficient for the existence of small
solutions to (1) that either

1. the eigenvalues lie on one or more additional trajectories compared to
those for the appropriate autonomous equation

2. the eigenvalue trajectories include some which loop close to the x-axis.

5.3 Numerical Examples

We present some examples illustrating the results of this aproach. In our
diagrams we illustrate the eigenspectrum arising from the non-autonomous
problem by ‘+’ and that from the autonomous problem formed by replacing
each bi(t) by 1

w

∫ w

0
bi(s)ds by ‘*’.

Example 5.1 In our first example we consider four cases of equation (1)
with b0(t) ≡ 0, w = 1, m = 2. In this case the theory tells us that b2(t)
changes sign on [0, 1] if and only if the equation has small solutions. In
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Figure 4. b2(t) does not change sign and we observe the proximity of the two
trajectories. In Figure 5. b2(t) does change sign and we observe the presence
of two additional trajectories in the non-autonomous eigenspectrum which
indicates the presence of small solutions.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

x 10
−4

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

−4 −3 −2 −1 0 1 2

x 10
−4

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−3

Figure 4.:

Left:
b1(t) = sin2πt + 0.5
b2(t) = sin2πt + 1.8

Right:
b1(t) = sin2πt + 1.5
b2(t) = sin2πt + 1.3

Our numerical experiments included (especially) cases when b2(t) = sin2πt+
c and |c| was close to 1. We found that it was still possible to detect the
presence of small solutions precisely when |c| ≤ 1, that is, when b2(t) changes
sign.

Example 5.2 We conclude with two eigenspectra resulting from equation (1)
with w = 1, m = 4 and b0(t) 6≡ 0. (a) b0(t) = sin2πt + 0.6, b1(t) = sin2πt +
0.3, b2(t) = sin2πt + 0.2, b3(t) = sin2πt + 0.7, b4(t) = sin2πt + 1.4. (b)
b0(t) = sin2πt + 1.8, b1(t) = sin2πt + 1.3, b2(t) = sin2πt + 1.2, b3(t) =
sin2πt + 1.7, b4(t) = sin2πt + 0.4.

In Figure 6. we observe the presence of additional trajectories in the right
hand eigenspectrum, that is when b4(t) changes sign, which is in accordance
with the theory.
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−4 −2 0 2 4 6
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Figure 5.:

Left:
b1(t) = sin2πt + 0.5
b2(t) = sin2πt + 0.3

Right :
b1(t) = sin2πt + 1.5
b2(t) = sin2πt + 0.3
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Figure 6.: Left: b4(t) does not change sign Right: b4(t) changes sign

6 Conclusions

In our previous work we successfully used a numerical method to identify
whether or not equations of the form (1) with m = 1 admit small solu-
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tions. The discussion above shows that we can adapt our method to identify
whether equations of the form (1) with any number of terms admit small
solutions.
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