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Abstract. In this paper, we consider a two-dimensional Schrödinger-type equation with a dy-
namical boundary condition. This model describes the long-range sound propagation in naval
environments of variable rigid bottom topography. Our choice for a regular enough finite element
approximation is motivated by the dynamical condition and therefore, consists of a cubic splines
implicit Galerkin method in space. Furthermore, we apply a Crank-Nicolson time stepping for
the evolutionary variable. We prove existence and stability of the semidiscrete and fully discrete
solution. Due to the complexity of the analyzed problem, we use very refined technics in order to
derive estimates of the numerical error in the H

1-norm.
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1. Introduction

1.1. The ‘Parabolic’ Equation with Neumann bottom boundary condition. The Helm-
holtz equation is a model for the long-range sound propagation in the sea that observes the acoustic
pressure as a function of depth, range - which is the horizontal distance from the acoustic source,
and azimuth. In cylindrical coordinates, this equation takes the form

prr +
1

r
pr +

1

r2
pϑϑ + pxx + k20n

2
refp = 0,

where p is the acoustic pressure. The evolutionary variable r in [R0, R] is the horizontal distance
from a harmonic point source which is placed on the x axis emitting at a frequency f0. The depth
variable x ≥ 0 is increasing downwards and ϑ is the azimuth varying in the interval [ϑ1, ϑ2] with
0 ≤ ϑ1 < ϑ2 ≤ 2π. Furthermore,

k0 :=
2π f0
c0

,

is a reference wave number where the constant c0 is a reference sound speed, and

nref(r, x, ϑ) :=
c0

c(r, x, ϑ)
,

is the refraction index, where c(r, x, ϑ) is the sound speed in the water. The medium is inhomoge-
neous, therefore, the refraction index depends on all variables.

The application of an envelop transformation and a paraxial far-field approximation lead to the
standard narrow-angle 2D ‘Parabolic’ Equation (PE), where ‘2D’ refers to the space variables,
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[15, 17, 18]. (PE) is the following Schrödinger-type equation

(1.1) Ψr =
i

2 k0

(
Ψxx +

1
r2

Ψϑϑ

)
+ i k02 (n2

ref − 1)Ψ.

The unknown function Ψ stands as a measure for the acoustic pressure in inhomogeneous, weakly
range-dependent marine environments.

More specifically, the envelop transformation is

p(r, x, ϑ) =
Ψ(r, x, ϑ)eik0r√

k0r
.

Then, the equation (1.1) is derived under the assumptions of a paraxial approximation, i.e. that

|2ik0Ψr| >> |Ψrr|,
and of the far field approximation

k0r >> 1,

which means that (PE), as an approximate model, describes the sound transmission very far from
the acoustic source.

This approximation is motivated by the fact that Helmholtz equation is very difficult to be
analyzed mathematically while its numerical analysis is highly nontrivial, since it is of elliptic type
and is posed on a 3-dimensional domain. Simulations for realistic marine environments of range R
equal to some kilometers and of medium depth, easily result in linear systems where the number
of unknowns is of order O(106); this numerical cost restricts significantly the use of this equation
in practice. (PE), being an evolutionary equation of Schrödinger type, is much more accessible.
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Figure 1 The naval environment.

We assume that the variable bottom topography in cylindrical coordinates is given by a positive
surface x = s(r, ϑ). The equation (1.1) is posed on the noncylindrical domain, cf. Fig. 1,

S := {(r, x, ϑ) : r ∈ [R0, R], ϑ ∈ [ϑ1, ϑ2], x ∈ [0, s(r, ϑ)]} ,
where, of course, the boundary values of space variables depend on the evolutionary variable r. At
a given distance r, these values generate a union of 4 curves which are embedded in R

3 given as
4∪

i=1
Si(r), for:

S1(r) := {(r, 0, ϑ) : ϑ ∈ [ϑ1, ϑ2]} ,
S2(r) := {(r, x, ϑ1) : x ∈ [0, s(r, ϑ1)]} ,
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S3(r) := {(r, s(r, ϑ), ϑ) : ϑ ∈ [ϑ1, ϑ2]} (the variable boundary),

and
S4(r) := {(r, x, ϑ2) : x ∈ [0, s(r, ϑ2)]} ,

cf. Fig. 2.
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Figure 2 The boundary at a fixed distance r.

The initial condition for the equation (1.1) is given by

(1.2) Ψ(R0, x, ϑ) = Ψ0(x, ϑ) ∀ϑ ∈ [ϑ1, ϑ2], ∀x ∈ [0, s(R0, ϑ)],

where Ψ0 represents a harmonic point source and is usually defined as a smooth function with
compact support, for example as a linear combination of Gaussian starters, cf. [18]. The horizontal
surface of the domain which, for given r, refers to S1(r) (sea surface) and the lateral boundaries
S2(r) and S4(r) are assumed to be perfectly absorbing which is mathematically modeled by imposing
the following homogeneous Dirichlet boundary condition

(1.3) Ψ(r, x, ϑ) = 0 on S1(r) ∪ S2(r) ∪ S4(r).

In addition, a Neumann condition modeling the acoustically rigid bottom is posed along the variable
boundary S3(r), i.e.

∂Ψ

∂n
(r, ·) = 0 on S3(r),

which yields, since the domain is noncylindrical

(1.4) Ψx(r, x, ϑ) − 1
r2 sϑ(r, ϑ)Ψϑ(r, x, ϑ) = sr(r, ϑ)Ψr(r, x, ϑ) on S3(r).

This boundary condition is a nonstandard dynamical one because it includes the term Ψr and r
is the time-like evolutionary variable; note that r corresponds to time in the usual Schrödinger
equation of quantum mechanics.

The equation so-obtained is of Schrödinger type, with Dirichlet condition for the free surface on
the top and Neumann condition along the bottom. The mathematical analysis of this problem is
intricate when the profile of the bottom varies with the distance r. Depending on the sign of term
sr which is introduced in the leading term of the Neumann condition, certain difficulties may be
encountered.

In the axial symmetric case, which translates to an one-dimensional problem where the bottom
s is only a function of range r, Abrahamsson and Kreiss proved well-posedness when s is strictly
monotone, cf. [1, 2]. Further, they observed the development of a significant amplitude increase in
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the long range propagation for certain downsloping bottom profiles (sr ≥ 0). The analogous results
were presented in [7], by means of numerical simulations with finite element methods, for various
cases of downsloping bottoms; in fact, numerical blow-up was observed for such bottoms in the
presence of inflection points. Remind that sr is the coefficient of the dynamical term Ψr, the sign
of which seems to be important for the Heat equation with dynamical conditions also, cf. [13, 19]
for the theoretical p.d.e. problem and [7] for the optimal order error analysis of the constructed
numerical scheme.

In this paper we will apply Galerkin finite element methods to the initial and boundary problem
(1.1), (1.2), (1.3), (1.4), when s is smooth, and decreasing in range (upsloping bottom), more
specifically under the following assumptions holding on the domain of definition of s, cf. Fig. 3:

sr(r, ϑ) ≤ 0 for any r, ϑ, where if sr(r0, ϑ0) = 0 for some r0, ϑ0, then sϑ(r0, ϑ0) = 0 also.
(1.5)

Obviously, a strictly monotone topography (sr < 0) satisfies (1.5). In addition, this relation is in

s(r,ϑ)

r

x

RR
0

Figure 3 Bottom profile at a fixed azimuth ϑ.

general valid for monotone bottom profiles (sr ≤ 0) where critical points in distance may appear,
under the restriction though that any of these points must be a critical point in azimuth also.

The problem analyzed, posed in a single layer of water over a bottom of variable topography,
is an idealized one. More realistic environments consist of a layer of water above several layers of
fluid sediments, cf. [11] for a review considering the problem with interfaces. Furthermore, one has
to take into account the shear stress yielding the so-called elastic (TBC) conditions, [12].

Considering the one-dimensional problem posed on a variable domain there exists an intensive
rigorous numerical investigation. In [3, 6], the authors applied finite difference schemes to the
Dirichlet problem; for an optimal error analysis of finite difference and finite element schemes in
the case of Neumann- or a Robin-type bottom boundary condition cf. [4, 7]. More recently, space-
time discontinuous in time Galerkin methods for the Dirichlet problem in R

n have been analyzed
in [9]; cf. also in [6], for finite element methods of optimal accuracy in the multi-dimensional case
with Dirichlet conditions. In [1], the Neumann boundary condition was modified in a Robin-type
one to ensure well-posedness of the (PE) problem posed on a rigid bottom; this model extended
in two dimensions has been analyzed in [8], where by proving a global elliptic regularity result the
authors derived optimal error estimates for the proposed finite element scheme.
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Without restrictions on the bottom profile s, the well posedness of the (PE) with a Neumann
condition (as an initial and boundary value problem) remains open, while as we shall see in the
sequel, there appear certain technical obstacles even when we treat the numerical scheme.

1.2. The transformed problem. In order to derive an equivalent problem posed on a rectangle
as in [17, 4, 6, 8, 9], we apply the horizontal bottom transformation

(1.6) z := x
s(r,ϑ) .

Furthermore, we define

(1.7) q(r, ϑ) := − ln s
2 , Ψ(r, x, ϑ) = eq(r,ϑ)U(r, z, ϑ).

After this change of variables the ibvp (1.1)-(1.4) takes the equivalent formulation for D := [0, 1]×
[ϑ1, ϑ2],

Ur = AUzz +BUzϑ +CUϑϑ +DUz +EUϑ + iβU + f in [R0, R]×D,

U = 0 at z = 0, and at ϑ = ϑ1, ϑ2,

[AUz +
B

2 Uϑ] + a1Uz + a2U + a3Ur = 0 at z = 1,

U = U0(z, ϑ) at r = R0,

(1.8)

where a1, a2, a3 are functions of r, ϑ, and A = A(r, z, ϑ), B = B(r, z, ϑ), C = C(r), D = D(r, z, ϑ),
E = E(r, ϑ), f = f(r, z, ϑ). Also, cf. [5], for ã 6= 0, then A, B, C, D, E, β, a1, a2, a3, are given
by

A(z, r, ϑ) := iã
{

1
s2

+
z2s2ϑ
r2s2

}
, B(z, r, ϑ) := −2iã

r2
z sϑ

s , C(r) := iã
r2
,

D(z, r, ϑ) := z sr
s − iã

r2
z
s2
(sϑϑs− 2s2ϑ)− 2 iã

r2
z sϑ

s qϑ, E(r, ϑ) := 2qϑ
iã
r2
,

β := βR + iβI ,

a1(r, ϑ) =
iãs2r
s2 , a2(r, ϑ) =

iã
s γ for γ(r, ϑ) := s2r

2s +
s2ϑ
2r2s , a3(r, ϑ) = −sr

iã
s .

(1.9)

Remark 1.1. The first change of variables, (1.6), transforms the noncylindrical domain into a
cylindrical one fact that somehow simplifies the application of numerical schemes, since range and
space discretizations can be independent; remind that range is a time-like variable. Of course, the
resulting equation becomes more complicated.

The second exponential transformation (1.7) together with the specific definition of q has been
introduced in [17]. From a mathematical point of view, is related to the variable bottom boundary
condition, which is for this problem a Neumann one. It provides a simpler weak formulation for
the continuous problem, while it is crucial for the stability of the constructed numerical scheme (see
also the Remarks 2.1, and 3.4 in Sections 2,3 respectively).

Remark 1.2. Note that f = 0 for the specific transformed problem but for generalization purposes
we shall define f as an arbitrary complex function. In order to treat the (PE) problem (1.1) in a
more general setting, we introduce the complex function βΨ := ReβΨ + i ImβΨ as the coefficient of
the zero order term; usually the imaginary part of βΨ refers to the absorption of the sound signal
in the ocean (attenuation), [15], while k0

2 (n2
ref − 1) may define ReβΨ.
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The formulae of ã, β and U0 will not be used in this paper, we present them though for complete-
ness; these are given as follows:

ã := 1
2k0

,

βR := ReβΨ + ã
r2Re(q

2
ϑ + qϑϑ)− Imqr,

βI := ImβΨ + ã
r2 Im(q2ϑ + qϑϑ) + Reqr

U0(z, ϑ) := e−q(R0,ϑ)Ψ0(zs(R0, ϑ), ϑ).

1.3. Main results. The problem analyzed although being linear is very difficult due to the Neu-
mann boundary condition posed on a noncylindrical domain. More specifically in this condition
appears a dynamical term together with first order terms in space variables and the same holds
after the horizontal bottom transformation in

[AUz +
B

2 Uϑ] + a1Uz + a2U + a3Ur = 0 at z = 1.

When the problem is written in weak formulation, this leads to trace integrals of space derivatives
that are of lower regularity and thus hardly estimated; in fact only those coming from [AUz+

B

2 Uϑ]
are eliminated. In addition, the resulting p.d.e. has complex coefficients depending on all variables.

We formulate implicit finite element schemes for the ibvp (1.8). The treatment of the dynamical
boundary condition needs very refined estimates that are proven under the assumption of higher
regularity for the finite element space. More specifically, we use a cubic splines approximation in
space variables; this was not the case for the one-dimensional problem analyzed in [7], where a
piece-wise linear approximation gave a second order optimal error in the L2 norm. Furthermore,
we apply a Crank-Nicolson discretization for the time-like variable r and estimate the semidiscrete
and fully discrete error in the H1 norm.

For a general upsloping bottom topography, where s is a function of the range r and azimuth

ϑ and satisfies (1.5), we prove an H1 error of order O(h3−
1

2 + k2), for h and k the discretization
parameters in space and range respectively. Thus even though the scheme loses 1

2 from being

optimal, it is a high order scheme in space, while for h = O(k) the error in the L2 norm is of second
order of accuracy. In other words, the dynamical Neumann condition penalizes only slightly the
order of accuracy.

In addition, if s depends only on azimuth we derive an optimal H1 error of order O(h3 + k2).
The rest of this paper is as follows: In Section 2 we express the ibvp (1.8) in a weak formulation

for which we prove uniqueness of solution. Here, we define an H1-type hermitian sesquilinear form.
Further, we analyze the form’s properties, mainly in regard to the higher regularity of the input
data, to observe that more regular inputs (H2) lead to better estimates. The next Section, 3,
contains the analysis of a semidiscrete scheme in space variables, and presents the detailed proof
of H1-estimates of the error. Finally, in Section 4 we apply a Crank-Nicolson method in range.
By deriving an H1-stability result, we prove uniqueness of solution and estimate the fully discrete
error.

2. Weak formulation

Let (·, ·) denote the usual L2(D) inner product, and ‖ · ‖, ‖ · ‖m, m ∈ N
∗ the norms in L2(D) and

Hm(D) respectively.
For r fixed, we define

H̃1
0 (D) :=

{
u ∈ H1(D) : u = 0 at z = 0, and at ϑ = ϑ1, ϑ2

}
,
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where H1(D) is the usual complex Sobolev space. Multiplying the p.d.e of (1.8) with φ̄ ∈ H̃1
0 (D),

integrating and using the boundary conditions we get the following weak formulation:

(Ur, φ) =− (AUz, φz)− (CUϑ, φϑ)− 1
2{(BUz , φϑ) + (BUϑ, φz)}

+ ({D−Az − Bϑ
2 }Uz , φ) + i(βU, φ) + (f, φ) +

∫

z=1

[
AUz +

B

2 Uϑ

]
φ̄dϑ.

Note that for z = 1 we have

(2.1) AUz +
B

2 Uϑ = iã sr
s (Ur − sr

s Uz)− iã
s γ(r, ϑ)U.

Thus, since

(2.2) D−Az − Bϑ
2 = z sr

s ,

the weak formulation becomes

(Ur − z sr
s Uz − iβU, φ) =− (AUz, φz)− (CUϑ, φϑ)− 1

2{(BUz , φϑ) + (BUϑ, φz)}

+ iã

∫

z=1

[
sr
s (Ur − sr

s Uz)− 1
sγ(r, ϑ)U

]
φ̄dϑ + (f, φ),

(2.3)

for any φ ∈ H̃1
0 (D).

We shall prove that (2.3) admits at most one solution in H̃1
0 (D)∩H2(D), under the assumptions

(1.5) for s.

Remark 2.1. Note that the right-hand side of (2.2) admits this formula, which coincides with
a specific term of the Neumann condition at z = 1, due to the exponential transformation (1.7).

Furthermore, the presence of z is important since then Ur − z sr
s Uz − iβU ∈ H̃1

0 (D) and can be used
as a test function in the weak formulation when proving uniqueness in Theorem 2.6; this will result
in an imaginary trace integral for the first order terms.

For any r in [R0, R], let B(r; v,w) : [R0, R]×H1(D)×H1(D) → C be the following sesquilinear
form, for s, sϑ defined on r:

(2.4) B(r; v,w) := ( 1
s2 (1 +

s2ϑ
r2 z

2)vz, wz) +
1
r2 (vϑ, wϑ)− 1

r2 {(z
sϑ
s vz, wϑ) + (z sϑ

s vϑ, wz)}.
Since all the appearing functions of z, r, ϑ are real, it follows that B is hermitian, i.e.

B(r; v,w) = B(r;w, v).
Using the definition of B, the weak problem (2.3) is equivalently written as

(Ur − z sr
s Uz − iβU, φ) =− iãB(r;U, φ)

+ iã

∫

z=1

[
sr
s (Ur − sr

s Uz)− 1
sγ(r, ϑ)U

]
φ̄dϑ + (f, φ),

(2.5)

for any φ ∈ H̃1
0 (D) with U ∈ H̃1

0 (D) ∩H2(D) and U = U0(z, ϑ) at r = R0.
Throughout the rest of this paper the letter C will denote generic constants independent of the

discretization parameters.
Due to the definitions of A, B, and C, the stationary problem is elliptic and the sesquilinear

form is coercive. Furthermore, we obtain the next important lemma proven analytically in [5, 8].

Lemma 2.2. If v ∈ H1(D), then there exist constants C1, C2 > 0 such that

(2.6) C1‖v‖21 ≤ B(r; v, v) ≤ C2‖v‖21, for any r ∈ [R0, R].
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In addition, by straightforward calculations the next lemma follows, cf. [5, 8].

Lemma 2.3. If v, vr ∈ H1(D) then there exists a constant C0 > 0 such that

(2.7) 1
2∂rB(r; v, v) ≤ ReB(r; v, vr) + C0‖v‖21.

We remind that if Ω is a bounded domain of Lipschitz boundary and 1 ≤ p ≤ ∞ then

‖v‖Lp(∂Ω) ≤ C‖v‖1−1/p
Lp(Ω)‖v‖

1/p
W 1

p (Ω)
,

for any v ∈ W 1
p (Ω), cf. [10]. So, for p = 2 and since W 1

2 (D) := H1(D) we have

(2.8)

∫

z=1
|v|2dϑ ≤ C‖v‖‖v‖1,

for any v ∈ H1(D). This inequality will be frequently used when we estimate the appearing trace
integral terms.

Assuming higher regularity for the variables of the form B we prove the next lemma. In view of
relation (2.8), H2(D) regularity is sufficient.

Lemma 2.4. If φ ∈ H̃1
0 (D) ∩H2(D) then there exists a constant C > 0 such that

ReB(r;φ, z sr
s φz) ≤C‖φ‖21 + 1

2

∫

z=1

sr
s3

{
1 +

s2ϑ
r2

}
|φz |2dϑ

+ 1
2

1
r2

∫

z=1

sr
s |φϑ|2dϑ− 1

r2
Re

∫

z=1

sϑsr
s2

φzφ̄ϑdϑ.

Proof. The function z sr
s φz ∈ H̃1

0 (D) since it is zero at z = 0, ϑ = ϑ1, ϑ = ϑ2; hence, the quantity
B(r;φ, z sr

s φz) is well defined. We use the definition of B, and take real parts to obtain

ReB(r;φ, z sr
s φz) ≤C‖φ‖21 +Re( 1

s2 {1 + z2
s2ϑ
r2 }φz, z

sr
s φzz) +

1
r2Re(φϑ, z

sr
s φzϑ)

− 1
r2
Re{(z sϑ

s φz, z
sr
s φzϑ) + (z sϑ

s φϑ, z
sr
s φzz)}.

Further, we compute every real part at the right-hand side of the above inequality by applying
integration by parts to each of these terms and using the boundary conditions, to get the result. �

Remark 2.5. It holds that if a, b, c are real and |a||b| > |c|2

4 then

|a||x|2 + |b||y|2 + cRe{xȳ} ≥ |a||x|2 + |b||y|2 − |c||x||y| ≥ 0,

for any complex x, y. Hence, since

1
2

1
s3
{1 + s2ϑ

r2
}1
2

1
r2

1
s > 1

4
1
r4

s2ϑ
s2s2

,

then under the assumptions (1.5) for s (upsloping bottom), Lemma 2.4 gives

(2.9) ReB(r;φ, z sr
s φz) ≤ C‖φ‖21,

for any φ ∈ H̃1
0 (D) ∩H2(D).

Note that without (1.5) the estimate would only be

ReB(r;φ, z sr
s φz) ≤ C‖φ‖1‖φ‖2.

The estimate (2.9) which is true for the upsloping case is used to establish uniqueness of weak
solution. In addition, it motivates in the sequel the choice of higher regularity (H2) for the finite
element space and permits us to estimate the numerical error.
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For the sake of a simpler notation and for the rest of this paper, the symbol B(v,w), whenever
is used, will denote B(r; v,w).

The next theorem establishes uniqueness of solution for the weak formulation (2.5) in the up-
sloping bottom case.

Theorem 2.6. Under the assumptions (1.5) for s (upsloping bottom) the problem (2.5) admits at

most one solution U in H̃1
0 (D) ∩H2(D).

Proof. Obviously, since the non-homogeneous problem with general f is linear, it is sufficient to
prove uniqueness for f = 0.

In (2.5) we set f := 0 and define

φ := Ur − z sr
s Uz − iβU ∈ H̃1

0 (D).

Furthermore, we take imaginary parts and obtain

Im{ã−1‖φ‖2} = 0 =− ReB(U,Ur) + ReB(U, z sr
s Uz) + ReB(U, iβU)

+

∫

z=1

sr
s |φ+ iβU |2dϑ+Re

∫

z=1

sr
s [φ+ iβU ][−iβU ]dϑ

− Re

∫

z=1

1
sγ(r, ϑ)U [φ + iβU ]dϑ− Re

∫

z=1

1
sγ(r, ϑ)U [−iβU ]dϑ.

Therefore,

ReB(U,Ur) =ReB(U, z sr
s Uz) + ReB(U, iβU)

+

∫

z=1

sr
s |φ+ iβU |2dϑ+Re

∫

z=1

sr
s [φ+ iβU ][−iβU ]dϑ

− Re

∫

z=1

1
sγ(r, ϑ)U [φ + iβU ]dϑ − Re

∫

z=1

1
sγ(r, ϑ)U [−iβU ]dϑ

≤C‖U‖21 +ReB(U, iβU) + C‖U‖‖U‖1,

(2.10)

where we used Remark 2.5 since U ∈ H̃1
0 (D)∩H2(D), together with the trace inequality (2.8) and

the upsloping bottom condition (1.5). Here, the non-positive trace term is
∫

z=1

sr
s |φ+ iβU |2dϑ,

and is used to bound all the other trace integrals. Note that even when sr = 0 and this term vanishes
the same happens for all traces also since by (1.5) sϑ = 0 and thus γ = 0; this is the reason for
assuming that when sr(r, ϑ) is zero for some r, ϑ then sϑ(r, ϑ) is zero also.

We use now Lemma 2.3 for v := U ∈ H1(D) and obtain

1
2∂rB(U,U)− C0‖U‖21 ≤ ReB(U,Ur).

Hence, the above relation combined with (2.10) gives

(2.11) 1
2∂rB(U,U)− C0‖U‖21 ≤ ReB(U,Ur) ≤ C‖U‖21 +ReB(U, iβU) + C‖U‖‖U‖1,

for some C0 > 0.
Evidently, since U ∈ H1(D) then by (2.4), (2.11) and Lemma 2.2 we obtain

(2.12) 1
2∂rB(U,U) ≤ CB(U,U).
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We integrate (2.12) and get

B(U,U) ≤ CB(U0, U0).

Applying again Lemma 2.2 in both sides, we have

‖U‖1 ≤ C‖U0‖1,

and so,

‖U‖ ≤ C‖U0‖1,
i.e. uniqueness of weak solution in H̃1

0 (D) ∩H2(D). �

Remark 2.7. Usually in evolutionary equations, cf. [14] for parabolic initial and boundary value
problems, a weak solution and its evolutionary derivative, if they exist, are considered in evolution-
ary spaces. In the same spirit, for the problem presented here, a weak solution U as a function of

r, z, ϑ, if exists, should be in L2(R0, R;H) for H := H̃1
0 (D) ∩ H2(D) and Ur in L2(R0, R;H−1)

where H−1 is the dual space of H.
When proving uniqueness of weak solution, we considered something stronger for U : for any

r ∈ (R0, R) fixed, U(r, ·) in the Sobolev space H which gives that U ∈ L2(R0, R;H) since the range
interval is bounded.

Of course, we only treated the uniqueness question. A proof of existence of weak solution for the
continuous problem, is not in the aims of this paper. When the bottom is only a function of range
the problem is well-posed, [1, 2]. We refer also to the existing bibliography for the Heat equation
with dynamical boundary conditions conditions, [13, 19], and to the book of Evans, [14].

3. Semidiscretization in depth and azimuth

Let Sh be a finite dimensional subspace of H̃1
0 (D)∩H2(D) consisting of complex-valued functions

that are polynomials of degree at most τ − 1 ≥ 3 (for example cubic splines for τ = 4) in each
element of a quasi-uniform partition of D with maximum diameter h ∈ (0, h⋆]. Then, [10], the
following approximation property holds for s = 1, . . . , τ, ∀ v ∈ Hs(D), ∀h ∈ (0, h⋆]:

(3.1) inf
χ∈Sh

{
‖v − χ‖+ h‖v − χ‖1

}
≤ C hs ‖v‖s.

Also, we assume that the following inverse inequality holds

(3.2) ‖χ‖1 ≤ C h−1 ‖χ‖ ∀χ ∈ Sh, ∀h ∈ (0, h⋆],

which is true since the partition of D is quasi-uniform, [10].
We seek Uh : [R0, R] → Sh such that

(
∂rUh −Rh(z

sr
s Uhz + iβUh), φ

)
= −iãB(Uh, φ)

+ iã

∫

z=1

[
sr
s Rh(∂rUh − z sr

s Uhz)− 1
sγ(r, ϑ)Uh

]
φ̄dϑ+ (f, φ),

(3.3)

for any φ ∈ Sh, R0 < r ≤ R, with Uh(R0) a suitable approximation of U0 in Sh. Here, Rh :

H̃1
0 (D) → Sh is defined to satisfy for any v ∈ H̃1

0 (D)

(3.4) B(Rhv, φ) = B(v, φ) for any φ ∈ Sh.
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Remark 3.1. The proposed semidiscrete scheme is implicit because it uses the projection induced
by B. As we shall see in the sequel, it mimics well the weak formulation of the continuous problem
where when proving H1 stability of solution we used Ur − z sr

s Uz + iβU as test function. Here, the

analogous element in Sh is ∂rUh −Rh(z
sr
s Uhz + iβUh) ∈ H2(D).

Remark 3.2. Observe that |B(v,w)| ≤ C‖v‖1‖w‖1 for any v,w ∈ H̃1
0 (D). Lemma 2.2, since

v ∈ H̃1
0 (D) ⊂ H1(D), gives that B(v, v) ≥ C‖v‖21. Hence, by Lax-Milgram Lemma the projection

operator Rh is well defined.

The next result establishes the existence of a unique solution for the scheme (3.3).

Proposition 3.3. Under the assumptions (1.5) (upsloping bottom), there exists a unique solution
Uh ∈ Sh for the semidiscrete scheme (3.3), which satisfies if f = 0

‖Uh‖1 ≤ C‖Uh(R0)‖1.

Proof. Since the problem is linear, in order to prove uniqueness it is sufficient to consider f = 0.
So, in (3.3), we set f = 0 and

φ := ∂rUh −Rh(z
sr
s Uhz + iβUh);

φ ∈ Sh because z sr
s Uhz ∈ H̃1

0 (D) and Uh ∈ Sh ⊂ H̃1
0 (D) ∩H2(D). So, we have

‖φ‖2 =‖∂rUh −Rh(z
sr
s Uhz + iβUh)‖2

=− iãB(Uh, ∂rUh) + iãB(Uh, Rh(z
sr
s Uhz)) + iãB(Uh, Rh(iβUh))

+ iã

∫

z=1

{
sr
s [∂rUh −Rh(z

sr
s Uhz)]− 1

sγ(r, ϑ)Uh

}[
∂rUh −Rh(z

sr
s Uhz + iβUh)

]
dϑ.

(3.5)

But by the projection operator definition, it holds that

(3.6) B(Uh, Rh(z
sr
s Uhz)) = B(Rh(z

sr
s Uhz), Uh) = B(z sr

s Uhz, Uh) = B(Uh, z
sr
s Uhz),

while

(3.7) B(Uh, Rh(iβUh)) = B(Rh(iβUh), Uh) = B(iβUh, Uh) = B(Uh, iβUh).

Replacing (3.6) and (3.7) in (3.5), and using

∂rUh −Rh(z
sr
s Uhz) = φ+Rh(iβUh),

at the right-hand side, we have

‖φ‖2 =‖∂rUh −Rh(z
sr
s Uhz + iβUh)‖2

=− iãB(Uh, ∂rUh) + iãB(Uh, z
sr
s Uhz) + iãB(Uh, iβUh)

+ iã

∫

z=1

{
sr
s [∂rUh −Rh(z

sr
s Uhz)]− 1

sγ(r, ϑ)Uh

}[
∂rUh −Rh(z

sr
s Uhz + iβUh)

]
dϑ

=iã
[
− B(Uh, ∂rUh) + B(Uh, z

sr
s Uhz) + B(Uh, iβUh)

]

+ iã

∫

z=1

{
sr
s [φ+Rh(iβUh)]− 1

sγ(r, ϑ)Uh

}
φdϑ.

(3.8)
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In the above, we take imaginary parts and use (1.5) to obtain

ReB(Uh, ∂rUh) ≤ReB(Uh, z
sr
s Uhz) + ReB(Uh, iβUh)

+ C

∫

z=1

[
|Uh|2 + |Rh(iβUh)|2

]
dϑ.

(3.9)

But for v ∈ H̃1
0 (D), it follows that

C1‖Rhv‖21 ≤ C2‖Rhv‖1‖v‖1,
for some positive constants C1, C2. So, we have

(3.10) ‖Rhv‖21 ≤ C‖v‖1 for any v ∈ H̃1
0 (D).

Using (3.10) in (3.9) and applying the trace inequality, we obtain

ReB(Uh, ∂rUh) ≤ ReB(Uh, z
sr
s Uhz) + C‖Uh‖21.(3.11)

Relation (3.11) together with Lemma 2.3 for Uh ∈ H1(D) and Remark 2.5 (since Uh ∈ H̃1
0 (D) ∩

H2(D)), give for some C0 > 0

1
2

d
drB(Uh, Uh)− C0‖Uh‖21 ≤ ReB(Uh, ∂rUh) ≤ ReB(Uh, z

sr
s Uhz) + C‖Uh‖21

≤ C‖Uh‖21.
We integrate the above, use Lemma 2.2 and get for f = 0

‖Uh‖1 ≤ C‖Uh(R0)‖1 (uniqueness, stability).

Finally, we shall prove that the semidiscrete scheme (3.3) for f = 0, which is written in implicit
form, is a linear first order ordinary differential system, where the matrix consisting of the coeffi-
cients of the derivatives is invertible. So, it has a solution which by stability is unique. As a result
the non-homogeneous linear scheme has also a unique solution.

Indeed, for the homogeneous differential system we obtain

(∂rUh, φ) =(Rh(
sr
s zUhz − iβUh), φ) − iãB(Uh, φ)

+ iã

∫

z=1

{
sr
s [∂rUh −Rh(z

sr
s Uhz)]− 1

sγ(r, ϑ)Uh

}
φ̄dϑ.

(3.12)

Observe first that the projection operator Rh is a linear operator taking values in a finite-dimensional

space. Let Uh =
N∑

i=1

ci(r)φi, then (3.12) gives that

B
−→̇
c (r) = C−→c (r),

with

Bij = (φi, φj)− iã

∫

z=1

sr
s φiφ̄jdϑ.

Hence, B has the form

B = A1 − iãA2,

where φi, φj ∈ R, and A1 is a real, symmetric and positive definite matrix, while A2 is a real
symmetric matrix. Therefore, cf. [5, 7], the matrix B is invertible, and (3.12) admits a unique
solution. �
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Remark 3.4. In order to prove stability we used the test function φ = ∂rUh−Rh(z
sr
s Uhz+iβUh) ∈

Sh. This choice was possible and convenient for the same reasons explained in Remark 2.1, related to
the specific exponential transformation (1.7). Uniqueness of weak solution for the initial continuous
problem is in fact independent from (1.7), which just made the proof easier for the equivalent
transformed one. The numerical scheme is of course defined after the implementation of (1.7), so
its stability certainly depends on this transformation.

3.1. Error estimates for the semidiscrete scheme. Let ε := Uh − U be the error of the
semidiscrete scheme, where Uh ∈ Sh is the solution of (3.3) and U is the solution of the weak
problem (2.3).

For any u ∈ H1(D) we define
ω(u) := Rhu− u.

We write
ε = θ + ω(U),

with
θ := Uh −RhU ∈ Sh,

and ω(U) := RhU − U, where Rh is the projection operator given by (3.4).
Considering the projection error ω and its derivatives in r, the next important lemma holds true;

cf. [5, 8] for the analytical and very technical proof which is based on a global elliptic regularity
result for complex elliptic problems with mixed Dirichlet and Robin conditions proven in [5, 8].

Lemma 3.5. If v ∈ H̃1
0 (D) ∩Hs(D) then for ω := ω(v) we have

‖ω‖1 ≤ Chs−1‖v‖s and ‖ω‖ ≤ Chs‖v‖s,
‖ωr‖1 ≤ Chs−1{‖v‖s + ‖vr‖s} and ‖ωr‖ ≤ Chs{‖v‖s + ‖vr‖s},
‖ωrr‖ ≤ ‖ωrr‖1 ≤ Chs−1{‖v‖s + ‖vr‖s + ‖vrr‖s},

(3.13)

for any 1 ≤ s ≤ τ , where ω = Rhv − v and C > 0 is a constant independent of v, h.

Due to the fact that we seek an H2(D) semidiscrete solution we shall need estimates for the H2

norm of ω, presented at the following lemma.

Lemma 3.6. If v ∈ H̃1
0 (D) ∩Hs(D), 2 ≤ s ≤ 4, then for ω := ω(v) we have

‖ω‖2 ≤ Chs−2‖v‖s and ‖ωr‖2 ≤ Chs−2{‖v‖s + ‖vr‖s},(3.14)

where C > 0 is a constant independent of v, h.

Proof. We assumed that Sh ⊆ H̃1
0 (D)∩H2(D). Therefore, the interpolant Ih : H̃1

0 (D)∩H2(D) → Sh

satisfies

‖Ihv − v‖+ h‖Ihv − v‖1 + h2‖Ihv − v‖2 ≤ Chs‖v‖s,
for 2 ≤ s ≤ τ and v ∈ H̃1

0 (D) ∩Hs(D).

We have that τ = 4 (cubic splines [16]). Then for v ∈ H̃1
0 (D)∩Hs(D), using the inverse inequality

in Sh and the approximation property of the interpolant, together with Lemma 3.5, we obtain

‖Rhv − v‖2 ≤‖Rhv − Ihv‖2 + ‖Ihv − v‖2 ≤ Ch−2‖Rhv − Ihv‖+ chs−2‖v‖s
≤ Ch−2‖Rhv − v‖+ ch−2‖v − Ihv‖+ Chs−2‖v‖s
≤ Ch−2hs‖v‖s + ch−2hs‖v‖s + Chs−2‖v‖s ≤ Chs−2‖v‖s,
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and

‖(Rhv − v)r‖2 =‖(Rhv)r − vr‖2 ≤ ‖(Rhv)r −Rh(vr)‖2 + ‖Rh(vr)− vr‖2
≤Ch−2‖(Rhv)r −Rh(vr)‖+ Chs−2‖vr‖s
≤Ch−2‖(Rhv)r − vr‖+Ch−2‖Rh(vr)− vr‖+ Chs−2‖vr‖s
≤Ch−2hs{‖vr‖s + ‖v‖s}+ Ch−2hs‖vr‖s + Chs−2‖vr‖s
≤Chs−2{‖vr‖s + ‖v‖s}.

�

The next theorem estimates the numerical error of the semidiscrete scheme in the H1(D) norm.

Theorem 3.7. Let U be the solution of (1.8), τ = 4 (for example cubic splines approximation),
U ∈ Hs(D) and Uh be the solution of the semidiscrete scheme (3.3). Under the assumptions (1.5)
the next estimate holds, for 2 ≤ s ≤ τ

(3.15) ‖Uh − U‖1 ≤ ‖Uh(R0)− U(R0)‖1 + Chs−
3
2 + Chs−1‖U(R0)‖s.

Proof. Obviously since

‖Uh − U‖1 = ‖ε‖1 = ‖θ + ω(U)‖1 ≤ ‖θ‖1 + ‖ω(U)‖1,
in order to estimate the error in the H1-norm, we must provide a bound for ‖θ‖1.

We subtract the weak formulation (2.5) and the semidiscrete scheme (3.3) to obtain for any

φ ∈ Sh ⊂ H̃1
0 (D) ∩H2(D)

(εr −Rh(z
sr
s Uhz + iβUh) + z sr

s Uz + iβU, φ) = −iãB(ε, φ)

+ iã

∫

z=1

{
sr
s [εr −Rh(z

sr
s Uhz) +

sr
s Uz]− 1

sγ(r, ϑ)ε
}
φ̄dϑ.

(3.16)

Recall the definition (2.4) of the form B.
Here, and for the rest of this paper, the symbol ω whenever appears without input denotes

ω(U) = Rh(U)− U .
We choose now

φ := θr −Rh(z
sr
s θz + iβθ) ∈ Sh

and so, denoting

σ := Rh(z
sr
s θz + iβθ),

we have

φ = θr − σ.

Remind that ω(u) := Rh(u)− u is well defined if u ∈ H1(D). The quantity

ω(z sr
s ωz + iβω) ≡ ω(z sr

s ωz(U) + iβω(U))

(i.e. ω on z sr
s ωz(U) + iβω(U)) is well defined also since RhU ∈ Sh ⊆ H̃1

0 (D) ∩ H2(D), and

furthermore z sr
s ωz ∈ H̃1

0 (D).
In (3.16) we replace ε by θ + ω. By the definition of Rh, we have B(ω, φ) = 0. So, we replace

φ = θr − σ,
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we take imaginary parts and obtain after straightforward but extensive calculations, cf. [5],

ReB(θ, θr)− ReB(θ, z sr
s θz + iβθ)−

[
Ã+ CB̃‖θ‖+ CC̃‖σ‖

]

≤ C

∫

z=1

{
|Rh(iβθ)|2 + |Rh(z

sr
s ωz)|2 + |ω(z sr

s Uz)|2 + |ωr − 1
sγ(r, ϑ)ω|

2 + |γ(r, ϑ)θ|2
}
dϑ,

(3.17)

for

Ã := d
dr

1
ãIm

(
{ω(z sr

s ωz + iβω) + z sr
s ωz + iβω + ω(z sr

s Uz) + ω(iβU)− ωr}, θ
)
,

B̃ :=
∥∥∥ωr(z

sr
s ωz + iβω) + d

dr [z
sr
s ωz + iβω] + ωr(z

sr
s Uz) + ωr(iβU) − ωrr

∥∥∥,

C̃ :=
∥∥∥ω(z sr

s ωz + iβω) + z sr
s ωz + iβω + ω(z sr

s Uz) + ω(iβU)− ωr

∥∥∥.

Lemmas 2.2, 2.3 and 2.4, yield

ReB(θ, θr) ≥ 1
2

d
drB(θ, θ)− C‖θ‖21,

and

ReB(θ, z sr
s θz + iβθ) ≤ C‖θ‖21.

Hence, (3.17) becomes the following main inequality

1
2

d
drB(θ, θ) ≤

[
Ã+CB̃‖θ‖+ CC̃‖σ‖

]
+ C‖θ‖21

+ C

∫

z=1

{
|Rh(iβθ)|2 + |Rh(z

sr
s ωz)|2 + |ω(z sr

s Uz)|2 + |ωr − 1
sγ(r, ϑ)ω|

2 + |γ(r, ϑ)θ|2
}
dϑ.

(3.18)

The inequality (3.18) is crucial for the proof, but as it contains many terms, we shall estimate
each one of them in successive steps.

Step 1: We shall proceed by estimating B̃.
Considering B̃, we will show that is bounded under the regularity assumption for Sh. Indeed,

since z sr
s ωz, iβω ∈ H̃1

0 (D) then by Lemmas 3.6 and 3.5, we get

‖ωr(z
sr
s ωz + iβω)‖ ≤ Ch{‖ωz‖1 + ‖ωzr‖1 + ‖ω‖1} ≤ Ch{‖ω‖2 + ‖ωr‖2}

≤ Chhs−2{‖U‖s + ‖vr‖s} = Chs−1{‖U‖s + ‖Ur‖s}.
Also, we have

‖ d
dr [z

sr
s ωz + iβω]‖ ≤ C{‖ωz‖+ ‖ωrz‖+ ‖ω‖+ ‖ωr‖}

≤ C{‖ω‖1 + ‖ωr‖1 + ‖ω‖+ ‖ωr‖}
≤ Chs−1{‖U‖s + ‖Ur‖s},

and

‖ωr(z
sr
s Uz) + ωr(iβU) + ωrr‖ ≤ C{‖ωr(Uz)‖+ ‖ωr‖+ ‖ωrr‖}

≤ Chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}.
Thus, we obtain

(3.19) B̃ ≤ Chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}.
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Step 2: Considering C̃ we have

‖ω(z sr
s ωz + iβω)‖ ≤ C‖ω(ωz) + ω(ω)‖ ≤ Ch{‖ωz‖1 + ‖ω‖1}

≤ Ch‖ω‖2 ≤ Chs−1‖U‖s,

while the next inequality holds true

‖z sr
s ωz + iβω + ω(z sr

s Uz) + ω(iβU)− ωr‖
≤ C{‖ω‖1 + ‖ω‖+ ‖ω(Uz)‖+ ‖ω(U)‖ + ‖ωr‖}
≤ Chs−1‖U‖s + Chs‖Uz‖s + Chs{‖U‖s + ‖Ur‖s}
≤ Chs−1{‖U‖s + ‖Ur‖s}.

So, we get

(3.20) C̃ ≤ Chs−1{‖U‖s + ‖Ur‖s}.

Step 3: We replace the estimates of B and C in main inequality (3.17).
Indeed, using (3.19), (3.20), relation (3.17) is written as

1
2

d
drB(θ, θ) ≤ Ã+ C‖θ‖21
+ Chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}‖θ‖+ Chs−1{‖U‖s + ‖Ur‖s}‖σ‖

+ C

∫

z=1

{
|Rh(iβθ)|2 + |Rh(z

sr
s ωz)|2 + |ω(z sr

s Uz)|2 + |ωr − 1
sγ(r, ϑ)ω|

2 + |γ(r, ϑ)θ|2
}
dϑ.

(3.21)

Let us comment how we shall treat relation (3.21). The trace term and ‖σ‖ will be suitably
bounded. Furthermore, we shall integrate the resulting inequality.

Step 4: Considering the terms of the trace integral we first obtain
∫

z=1
|Rh(iβθ)|2dϑ ≤ C

∫

z=1
{|ω(iβθ)|2 + |θ|2}dϑ

≤ C‖ω(θ)‖21 + C‖θ‖21 ≤ C‖θ‖21 + C‖θ‖21 ≤ C‖θ‖21.
(3.22)

The following term gives the lowest order in our estimates. In fact, using the inverse and trace
inequalities, we arrive at

∫

z=1
|Rh(z

sr
s ωz)|2dϑ ≤ C‖Rh(z

sr
s ωz)‖.‖Rh(z

sr
s ωz)‖1

≤ Ch−1‖Rh(z
sr
s ωz)‖2

≤ Ch−1{‖ω(z sr
s ωz)‖2 + ‖ωz‖2}

≤ Ch−1(h2‖ωz‖21 + h2s−2‖U‖2s)
≤ Ch−1(h2h2s−4‖U‖2s + h2s−2‖U‖2s)
≤ Ch2s−3‖U‖2s.

(3.23)
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Furthermore, the next relations hold true
∫

z=1
|ω(z sr

s Uz)|2dϑ ≤ C‖ω(Uz)‖1‖ω(Uz)‖ ≤ Ch2s−3‖U‖2s,
∫

z=1
|ωr − 1

sγ(r, ϑ)ω|
2dϑ ≤ Ch2s−1{‖U‖2s + ‖Ur‖2s},

∫

z=1
|γ(r, ϑ)θ|2dϑ ≤ C‖θ‖21.

(3.24)

Step 5: We replace the estimates of trace integrals.
Indeed, using (3.22)-(3.24), relation (3.21) becomes

1
2

d
drB(θ, θ) ≤Ã+ Chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}‖θ‖+ Chs−1{‖U‖s + ‖Ur‖s}‖σ‖

+ Ch2s−3‖U‖2s + Ch2s−1{‖U‖2s + ‖Ur‖2s}+ C‖θ‖21.
(3.25)

Step 6: We estimate ‖σ‖ and replace in (3.25).
The inverse inequality gives

‖σ‖ = ‖Rh(z
sr
s θz + iβθ)‖

≤ ‖ω(z sr
s θz + iβθ)‖+ c‖θz‖+ C‖θ‖

≤ Ch‖θz‖1 + Ch‖θ‖1 + C‖θ‖1
≤ Ch‖θ‖2 ≤ C‖θ‖1.

Thus, (3.25) takes the form

d
drB(θ, θ) ≤2Ã+ chs−1{‖U‖s + ‖Ur‖s + ‖Urr‖s}‖θ‖1

+ C‖θ‖21 + Ch2s−3(‖U‖2s + ‖Ur‖2s)
≤2Ã+ ch2s−2{‖U‖2s + ‖Ur‖2s + ‖Urr‖2s}

+ C‖θ‖21 + Ch2s−3(‖U‖2s + ‖Ur‖2s)
≤2Ã+ C‖θ‖21 + Ch2s−3(‖U‖2s + ‖Ur‖2s + ‖Urr‖2s).

(3.26)

We integrate (3.26) and obtain

B(θ, θ) ≤2

∫ r

R0

Ãds+ Ch2s−3

∫ r

R0

[‖U‖2s + ‖Ur‖2s + ‖Urr‖2s]ds

+ C

∫ r

R0

‖θ‖21ds+ B(R0; θ, θ).

(3.27)

Step 7: We estimate the integral of Ã.
Easily, it follows that

∫ r

R0

Ãds ≤C{‖ω(ωz)‖+ ‖ω(ω)‖ + ‖ωz‖+ ‖ω‖+ ‖ω(Uz)‖+ ‖ωr‖}‖θ‖1

+ C{‖ω(ωz)‖+ ‖ω(ω)‖ + ‖ωz‖+ ‖ω‖+ ‖ω(Uz)‖+ ‖ωr‖}(R0)‖θ(R0)‖1,
(3.28)
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where the notation {· · · }(R0) denotes the quantities in these brackets computed at r = R0. In
addition, we have

‖ω(ωz)‖ ≤ Ch‖ωz‖1 ≤ Chhs−2‖U‖s ≤ Chs−1‖U‖s,
‖ω(ω)‖ ≤ Ch‖ω‖1 ≤ Chhs−1‖U‖s ≤ Chs‖U‖s,
‖ω(Uz)‖ ≤ Chs‖Uz‖s ≤ Chs−1‖U‖s.

(3.29)

In (3.28), we use the estimates for ‖ω‖, ‖ωr‖, ‖ω‖1 and (3.29). So, we obtain

(3.30)

∫ r

R0

Ãds ≤ Chs−1(‖U‖s + ‖Ur‖s)‖θ‖1 + Chs−1(‖U(R0)‖s + ‖Ur(R0)‖s)‖θ(R0)‖1.

Final Step: Relations (3.27), (3.30) and Lemma 2.2 yield

C‖θ‖21 ≤B(θ, θ)

≤Ch2s−2(‖U‖s + ‖Ur‖s)2 + Ch2s−3

∫ r

R0

[‖U‖2s + ‖Ur‖2s + ‖Urr‖2s]ds

+ C

∫ r

R0

‖θ‖21ds+ Ch2s−2(‖U(R0)‖s + ‖Ur(R0)‖s)2 +C‖θ(R0)‖21.

(3.31)

We must estimate first

δ(r) :=

∫ r

R0

‖θ‖21ds.

Using this notation, (3.31) is written as

(3.32) d
dr δ(r) ≤ E + Cδ(r),

for

E :=Ch2s−2(‖U‖s + ‖Ur‖s)2 + Ch2s−3

∫ r

R0

[‖U‖2s + ‖Ur‖2s + ‖Urr‖2s]ds

+ Ch2s−2(‖U(R0)‖s + ‖Ur(R0)‖s)2 + C‖θ(R0)‖21.

Integrating (3.32) yields

δ(r) ≤ Cδ(R0) +CE = CE ,
i.e. ∫ r

R0

‖θ‖21ds ≤ CE .

We replace in (3.31) this estimate, and we arrive at

(3.33) ‖θ‖21 ≤ Ch2s−3 + C‖θ(R0)‖21.
By (3.33) and (3.14) the H1 error estimate follows. �

Observing the proof of Theorem 3.7 we easily see that when s is only depending on the azimuth
ϑ (sr = 0 for any r, ϑ) then the suboptimal term

∫
z=1 |Rh(z

sr
s ωz)|2dϑ vanishes. Furthermore, the

results of all the presented lemmas and theorems hold true in this case also, cf. [5]. So, we obtain
the next theorem that gives an optimal error in the H1(D) norm.
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Theorem 3.8. Let U be the solution of (1.8), τ = 4 (for example cubic splines approximation),
U ∈ Hs(D) and Uh be the solution of the semidiscrete scheme (3.3). Under the assumptions (1.5),
the next estimate holds true, for 2 ≤ s ≤ τ and r ∈ [R0, R]

(3.34) ‖Uh − U‖1 ≤ ‖Uh(R0)− U(R0)‖1 + Chs−1 + Chs−1‖U(R0)‖s.

4. Crank-Nicolson fully discrete schemes in range

We consider a uniform partition in the range interval [R0, R]. More specifically, for N ∈ N
∗ we

define k := (R−R0)/N and rn := R0+nk for any n = 0, · · · , N . Further, let rn+1/2 := (rn+rn+1)/2
for any n = 0, · · · , N − 1.

For Un given, we seek Un+1 ∈ Sh such that

(
Un+1−Un

k −Rh

(
z sr(rn+1/2)

s(rn+1/2)
(U

n+1+Un

2 )z + iβ(rn+1/2)U
n+1+Un

2

)
, φ

)
=

− iãB(rn+1/2; U
n+1+Un

2 , φ) + (f(rn+1/2), φ)

+ iã

∫

z=1

[
sr(rn+1/2)

s(rn+1/2)
Rh

(
Un+1−Un

k − z sr(rn+1/2)

s(rn+1/2)
(U

n+1+Un

2 )z

)
− 1

s(rn+1/2)
γ(rn+1/2)U

n+1+Un

2

]
φ̄dϑ,

(4.1)

for any φ ∈ Sh, 0 ≤ n ≤ N − 1.
Here, U0 is an appropriate projection of U0 in Sh. Moreover, the projection operator Rh used is

induced by B(rn+1/2;u, v).

Remark 4.1. Obviously the fully discrete scheme is linear and is written in implicit form. In every
step it demands the successive solution of 3 linear systems. More specifically, for Un given, (4.1)
is implemented as follows:

(1) Compute Rh(z
sr(rn+1/2)

s(rn+1/2)
(Un)z) by solving the linear system

B(rn+1/2;Rh(z
sr(rn+1/2)

s(rn+1/2)
(Un)z), φ) = B(rn+1/2; z sr(rn+1/2)

s(rn+1/2)
(Un)z, φ),

for any φ in the basis of Sh (N ×N 1st linear system which has a unique solution since
B is well defined).

(2) Compute Rh(β(r
n+1/2)Un) by solving the linear system

B(rn+1/2;Rh(β(r
n+1/2)Un), φ) = B(rn+1/2;β(rn+1/2)Un, φ),

for any φ in the basis of Sh (N ×N 2nd linear system which has a unique solution since
B is well defined).

(3) Solve the following 3N × 3N 3rd linear system for any φ in the basis of Sh

(4.1) (where the computed Rh(z
sr(rn+1/2)

s(rn+1/2)
(Un)z), Rh(β(r

n+1/2)Un)

are replaced)

B(rn+1/2;Rh(z
sr(rn+1/2)

s(rn+1/2)
(Un+1)z), φ) = B(rn+1/2; z sr(rn+1/2)

s(rn+1/2)
(Un+1)z, φ)

B(rn+1/2;Rh(β(r
n+1/2)Un+1), φ) = B(rn+1/2;β(rn+1/2)Un+1, φ).

Thus, the 3N unknowns are:

Un+1, Rh

(
z sr(rn+1/2)

s(rn+1/2)
(Un+1)z

)
and Rh

(
β(rn+1/2)Un+1

)
.
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Remark 4.2. The numerical solution of these three systems which are solved successively results
in an algorithm of numerical cost equivalent to solving a 5N × 5N linear multi-diagonal system.
Therefore, the fact that our scheme is implicit does not affect the numerical complexity of the
algorithm.

On the other hand, the numerical implementation of the scheme is highly non-trivial. The com-
plexity of simulations is due mainly to the following reasons: a) the spatial domain is 2-dimensional,
b) the presence of a Neumann dynamical condition in 2 dimensions results in a cubic splines approx-
imation which is of third polynomial order, c) the Neumann condition involves a dynamical term
which changes in every step in r. A forthcoming paper will be devoted to the numerical experiments
and the discussion on the implementation issues.

Considering the 1-dimensional case with Neumann condition and for the 2-dimensional case
with the modified Robin condition in place of the Neumann one, numerical simulations in piece-
wise linear finite element spaces have been constructed by Antonopoulou in her Ph.D Thesis in [5];
cf. also in Ph.D Thesis of F. Sturm, [17], and in [7, 8].

Now, by H1 stability, we shall prove that the fully discrete scheme is well posed.

Proposition 4.3. Under the assumptions (1.5), the fully discrete scheme (4.1) is H1-stable and
admits a unique solution in Sh.

Proof. In (4.1) we take f = 0.
We note that the non-homogeneous discrete problem which is given in implicit form is linear,

so uniqueness which is equivalent to existence it is sufficient to be proven for f = 0, i.e. for
the homogeneous case. In addition, the stability argument in fact refers to the difference of two
possible solutions that each of them satisfy the same fully discrete scheme (4.1) with different initial
conditions. So, due to linearity, this difference satisfy the problem (4.1) with f = 0 (homogeneous)
and U0 the resulting difference of initial conditions of the discrete problems.

We set

φ := Un+1−Un

k −Rh

(
z sr(rn+1/2)

s(rn+1/2)
(U

n+1+Un

2 )z + iβ(rn+1/2)U
n+1+Un

2

)
,

and get

‖φ‖2 = −iãB(rn+1/2; U
n+1+Un

2 , φ)

+ iã

∫

z=1

[
sr(rn+1/2)

s(rn+1/2)
Rh

(
Un+1−Un

k − z sr(rn+1/2)

s(rn+1/2)
(U

n+1+Un

2 )z

)
− 1

s(rn+1/2)
γ(rn+1/2)U

n+1+Un

2

]
φ̄dϑ.

(4.2)

Observe now that

−ReB(rn+1/2; U
n+1+Un

2 , φ) =− ReB(rn+1/2; U
n+1+Un

2 , U
n+1−Un

k )

+ ReB
(
rn+1/2; U

n+1+Un

2 , z sr(rn+1/2)

s(rn+1/2)
(U

n+1+Un

2 )z

)

+ReB(rn+1/2; U
n+1+Un

2 , iβ(rn+1/2)U
n+1+Un

2 ).

(4.3)

We proceed by estimating the trace integral. The specific choice of φ is crucial, since the non-
positive trace integral

Re

∫

z=1

sr
s |U

n+1−Un

k −Rh(z
sr
s (

Un+1+Un

2 )z)|2dϑ,
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will appear. Indeed, as sr ≤ 0 it follows

Re

∫

z=1
[ srs Rh(

Un+1−Un

k − z sr
s (

Un+1+Un

2 )z)− 1
sγ

Un+1+Un

2 ]φ̄dϑ

=Re

∫

z=1
[ srs

Un+1−Un

k −Rh(z
sr
s (

Un+1+Un

2 )z)]φ̄dϑ

− Re

∫

z=1

sr
s (

1
sγ

Un+1+Un

2 )φ̄dϑ

=Re

∫

z=1

sr
s |U

n+1−Un

k −Rh(z
sr
s (

Un+1+Un

2 )z)|2dϑ

− Re

∫

z=1

sr
s (

Un+1−Un

k −Rh(z
sr
s (

Un+1+Un

2 )z))Rh(iβ
Un+1+Un

2 )dϑ

− Re

∫

z=1

sr
s (

1
sγ

Un+1+Un

2 )(U
n+1−Un

k −Rh(z
sr
s (

Un+1+Un

2 )z))dϑ

+Re

∫

z=1

sr
s (

1
sγ

Un+1+Un

2 )Rh(iβ
Un+1+Un

2 )dϑ

≤C

∫

z=1
{|Un+1+Un

2 |2 + |Rh(iβ
Un+1+Un

2 )|2}dϑ

≤C‖Un+1+Un

2 ‖21 + C‖Rh(
Un+1+Un

2 )‖21 ≤ C‖Un+1+Un

2 ‖21.

(4.4)

Note that for the above we used also the trace inequality together with relation (3.10).
Furthermore, in (4.2) we take imaginary parts and divide by ã. Then we use relations (4.3),

(4.4). So, we obtain

ReB(rn+1/2; U
n+1+Un

2 , U
n+1−Un

k ) ≤ReB(rn+1/2; U
n+1+Un

2 , z sr
s (

Un+1+Un

2 )z)

+ C‖Un+1+Un

2 ‖21
≤C‖Un+1+Un

2 ‖21,
(4.5)

where for the last inequality we used Lemma 2.4.
In addition, it holds that

ReB(rn+1/2; U
n+1+Un

2 , U
n+1−Un

k ) = 1
2k{B(r

n+1/2;Un+1, Un+1)− B(rn+1/2;Un, Un)}.
So, we have by (4.5)

B(rn+1/2;Un+1, Un+1) ≤ B(rn+1/2;Un, Un) + Ck‖Un+1‖21 + Ck‖Un‖21,
which yields

B(rn+1;Un+1, Un+1) ≤B(rn;Un, Un) + [B(rn+1/2;Un, Un)− B(rn;Un, Un)]

− [B(rn+1/2;Un+1, Un+1)− B(rn+1;Un+1, Un+1)]

+ Ck‖Un+1‖21 + Ck‖Un‖21
≤B(rn;Un, Un) +Ck‖Un+1‖21 + Ck‖Un‖21.

Here, we used the definition of B(r;u,w) which is related to an H1-type projection operator con-
taining only terms of the form (g(r)ua, wb) for a, b = z, ϑ and so

|B(r1;u,w) − B(r2;u,w)| ≤ C|r1 − r2|‖u‖1‖w‖1.
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Thus, we obtain

B(rn+1;Un+1, Un+1) ≤B(rn;Un, Un) + Ck‖Un+1‖21 + Ck‖Un‖21
≤B(rn;Un, Un) + CkB(rn+1;Un+1, Un+1) + CkB(rn;Un, Un),

where we used relation (2.6). So, for k small we arrive at

(4.6) B(Un+1, Un+1) ≤ (1+ck
1−ck )B(U

n, Un).

By (4.6) and (2.6) and since k is small we get

C1‖Un+1‖1 ≤ B(Un+1, Un+1) ≤ CB(U0, U0) ≤ C‖U0‖1 (stability-uniqueness),

and therefore,

‖Un+1‖ ≤ C‖U0‖1.
Hence, by uniqueness of solution we obtain existence. �

4.1. Error estimates. We define the error εn := Un − U(rn). We set

εn = θn + ωn,

with

θn = Un −Rn
h(U(rn)), and ωn := Rn

h(U(rn))− U(rn).

Let

Ωn := Rn
h(U(rn)), and Ωn+1/2 = (Ωn+1 +Ωn)/2,

then

Un = θn +Ωn.

Here, Rn
h is induced by B(rn;u, v) so that

B(rn;Rn
h(U(rn)), φ) = B(rn;U(rn), φ),

for any φ ∈ Sh. We also define

θn+1/2 := (θn+1 + θn)/2.

4.1.1. Preliminaries. The scheme (4.1) gives that for any φ ∈ Sh(
θn+1−θn+Ωn+1−Ωn

k −Rh

(
z sr

s

(
θn+1/2
z +Ωn+1/2

z

)
+ iβ

(
θn+1/2 +Ωn+1/2

))
, φ

)
=

− iãB(rn+1/2; θn+1/2 +Ωn+1/2, φ) + (f, φ)

+ iã

∫

z=1

{
sr
s Rh

(
θn+1−θn+Ωn+1−Ωn

k − z sr
s

(
θn+1/2
z +Ωn+1/2

z

))

− 1
sγ

(
θn+1/2 +Ωn+1/2

)}
φ̄dϑ,

where s, sr, β, γ and f are computed at r := rn+1/2. In the above, we use the identity

B(rn+1/2; Ωn+1/2, φ) = B(rn+1/2; U(rn+1)+U(rn)
2 , φ) + B(rn+1/2, En

0 , φ),

for

En
0 :=

1

2

(
[Rn

h(U(rn))− U(rn)] + [Rn+1
h (U(rn+1))− U(rn+1)]

− [R
n+1/2
h (U(rn) + U(rn+1))− (U(rn) + U(rn+1))]

)
,

(4.7)
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where R
n+1/2
h is induced by B(rn+1/2;u, v). So, we obtain

(
θn+1−θn

k −Rh

(
z sr

s θ
n+1/2
z + iβθn+1/2

)
, φ

)
= −iãB(rn+1/2; θn+1/2, φ)

+ iã

∫

z=1

sr
s

[
θn+1−θn

k −Rh

(
z sr

s θ
n+1/2
z

)]
φ̄dϑ − iã

∫

z=1

1
sγθ

n+1/2φ̄dϑ

+
(
Rh

(
z sr

s Ω
n+1/2
z

)
, φ

)
+

(
Rh

(
iβΩn+1/2

)
, φ

)

− iãB(rn+1/2; U(rn+1)+U(rn)
2 , φ) + iã

∫

z=1

sr
s

Ωn+1−Ωn

k φ̄dϑ

− iã

∫

z=1

sr
s Rh

(
z sr

s Ω
n+1/2
z

)
φ̄dϑ − iã

∫

z=1

1
sγΩ

n+1/2φ̄dϑ

− (Ω
n+1−Ωn

k , φ) + (f, φ)− iãB(rn+1/2;En
0 , φ).

(4.8)

Observe that for the continuous problem it holds that

(f, φ) =(Ur − z sr
s Uz − iβU, φ) + iãB(rn+1/2;U, φ)

− iã

∫

z=1
{sr

s [Ur − sr
s Uz]− 1

sγU}φ̄dϑ,

for f , s, sr, β, γ and U , Ur, Uz defined on r := rn+1/2 and φ is in Sh. In (4.8) we replace (f, φ)
given by the previous formula and obtain

(
θn+1−θn

k −Rh

(
z sr

s θ
n+1/2
z + iβθn+1/2

)
, φ

)
=

− iãB(rn+1/2; θn+1/2, φ) + iã

∫

z=1

sr
s

[
θn+1−θn

k −Rh

(
z sr

s θ
n+1/2
z

)]
φ̄dϑ

− iã

∫

z=1

1
sγθ

n+1/2φ̄dϑ+ (En
1 , φ) + (En

2 , φ) + (En
3 , φ)

+ iãB(rn+1/2;En
4 , φ)− iã

∫

z=1

sr
s E

n
1 φ̄dϑ

− iã

∫

z=1

sr
s E

n
2 φ̄dϑ + iã

∫

z=1

1
sγE

n
5 φ̄dϑ − iãB(rn+1/2;En

0 , φ),

(4.9)

where

En
1 := Ur(r

n+1/2)− Ωn+1−Ωn

k ,

En
2 := Rh

(
z sr

s Ω
n+1/2
z

)
− z sr

s Uz(r
n+1/2),

En
3 := Rh(iβΩ

n+1/2)− iβU(rn+1/2),

En
4 := U(rn+1/2)− U(rn+1)+U(rn)

2 ,

En
5 := U(rn+1/2)− Ωn+1/2.

(4.10)

4.1.2. Derivation of the fully discrete error estimate. Analogously to the semidiscrete scheme, we
choose

φ = θn+1−θn

k −Rh

(
z sr(rn+1/2)

s(rn+1/2)
θn+1/2
z + iβ(rn+1/2)θn+1/2

)
.
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Then, we define

σn := Rh

(
z sr(rn+1/2)

s(rn+1/2)
θn+1/2
z + iβ(rn+1/2)θn+1/2

)
,

and we write

(4.11) φ = θn+1−θn

k − σn.

In (4.9) we take imaginary parts and obtain

0 =− ãReB(rn+1/2; θn+1/2, φ) + ã

∫

z=1

sr
s |φ|

2dϑ− ãRe

∫

z=1

1
sγθ

n+1/2φ̄dϑ

+ Im[(En
1 , φ) + (En

2 , φ) + (En
3 , φ)] + ãReB(rn+1/2;En

4 , φ)

− ãRe

∫

z=1
[ srs E

n
1 + sr

s E
n
2 − 1

sγE
n
5 ]φ̄dϑ +Re

∫

z=1

sr
s Rh(iβθ

n+1/2)φ̄dϑ

− ãReB(rn+1/2;En
0 , φ).

In the above, we replace φ by (4.11) in the first sesquilinear form and in the inner products. Since
sr ≤ 0 we use

∫
z=1

sr
s |φ|2dϑ to bound the trace integrals and then apply the trace inequality to

obtain

ReB(rn+1/2; θn+1/2, θ
n+1−θn

k ) ≤ ReB(rn+1/2; θn+1/2, σn)

+

∫

z=1
|C0|2 sr

s |φ|
2dϑ +C‖θn+1/2‖21

+ 1
ã

[
‖En

1 ‖+ ‖En
2 ‖+ ‖En

3 ‖
]
‖σn‖+ReB(rn+1/2;En

4 , φ)

+ 1
ãk Im

[
(En

1 , θ
n+1 − θn) + (En

2 , θ
n+1 − θn) + (En

3 , θ
n+1 − θn)

]

+ C

∫

z=1

(
|En

1 |2 + |En
2 |2 + |En

5 |2
)
dϑ− ReB(rn+1/2;En

0 , φ),

(4.12)

where we used the relation (3.10).
The trace inequality applied on the trace integral of (4.12), gives

ReB(rn+1/2; θn+1/2, θn+1 − θn) ≤ kReB(rn+1/2; θn+1/2, σn)

+ k

∫

z=1
|C0|2 sr

s |φ|
2dϑ+ Ck‖θn+1/2‖21 + Ck

{
‖En

1 ‖+ ‖En
2 ‖+ ‖En

3 ‖
}
‖σn‖

+ kReB(rn+1/2;En
4 − En

0 , φ)

+ Ck
{
‖En

1 ‖1‖En
1 ‖+ ‖En

2 ‖1‖En
2 ‖+ ‖En

5 ‖1‖En
5 ‖

}
+Hn,

(4.13)

where

Hn := 1
ãIm(En

1 + En
2 + En

3 , θ
n+1 − θn).
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We observe that if φ ∈ Sh then

B(rn+1/2;En
4 − En

0 , φ) = −([ 1
s2
{1 + z2

s2ϑ
r2
}(En

4z − En
0z)]z , φ)

+

∫

z=1

1
s2
{1 + z2

s2ϑ
r2
}(En

4z − En
0z)φ̄dϑ

− 1
r2
(En

4ϑϑ − En
0ϑϑ, φ) +

1
r2
([z sr

s (E
n
4z − En

0z)]ϑ, φ)

− 1
r2 ([z

sr
s (E

n
4ϑ − En

0ϑ)]z , φ) +

∫

z=1
z sr

s (E
n
4ϑ − En

0ϑ)φ̄dϑ.

(4.14)

In (4.14) we take real parts. Then for C̃0 > 0 a constant as small as needed, and since

En
4 := U(rn+1/2)− U(rn+1)+U(rn)

2 , En
4z ≤ Ck2, En

4ϑ ≤ Ck2,

we have, for Λ|z=1 of the form [(Rm
h − I)(g)]a|z=1 with a = z, ϑ

kReB(rn+1/2;En
4 − En

0 , φ) ≤ k(An, φ) + Ck[‖En
4z‖∞ + ‖En

4ϑ‖∞]

∫

z=1
|φ|dϑ

+ Ck

∫

z=1
|Λ||φ|dϑ

≤ k(An, φ) + Ckk2
∫

z=1
|φ|dϑ + C

∫

z=1
k1/2|Λ|k1/2|φ|dϑ

≤ k(An, φ) + C

∫

z=1
k5/2k1/2|φ|dϑ + C

∫

z=1
k1/2|Λ|k1/2|φ|dϑ

≤ k(An, φ) + Ck5 + C̃0k

∫

z=1
|φ|2dϑ+ Ck

∫

z=1
|Λ|2dϑ

≤ Ck‖En
4 − En

0 ‖2‖σn‖+ (An, θn+1 − θn) + Ck5 + C̃0k

∫

z=1
|φ|2dϑ +Ck‖Λ‖‖Λ‖1

≤ Ck‖En
4 − En

0 ‖2‖σn‖+ (An, θn+1 − θn) + Ck5 + C̃0k

∫

z=1
|φ|2dϑ +Ckhs−1hs−2.

(4.15)

Here, An are of the form:

CnEn,

Cn = g(rn+1/2, z, ϑ),

En = En
z , E

n
ϑ , E

n
zz, E

n
zϑ, E

n
ϑϑ, for En = En

4 − En
0 .

(4.16)

In (4.13) we use the definition of Rh, relation (4.15), and the identity

ReB(rn+1/2; θn+1/2, θn+1 − θn) = 1
2 [B(r

n+1/2; θn+1, θn+1)− B(rn+1/2; θn, θn)].

So, under the assumptions on sr relation (4.13) gives finally

ReB(rn+1/2; θn+1, θn+1) ≤ ReB(rn+1/2; θn, θn)

+ 2kB(rn+1/2; θn+1/2, z sr
s θ

n+1/2
z + iβθn+1/2) + Ck‖θn+1/2‖21

+ Ck
{
‖En

1 ‖+ ‖En
2 ‖+ ‖En

3 ‖
}
‖σn‖+Ck‖En

4 − En
0 ‖2‖σn‖

+ (An, θn+1 − θn) + Ck5 + Ckh2s−3

+ k
{
‖En

1 ‖1‖En
1 ‖+ ‖En

2 ‖1‖En
2 ‖+ ‖En

5 ‖1‖En
5 ‖

}
+Hn.

(4.17)
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We set

Zn :=Ck{‖En
1 ‖+ ‖En

2 ‖+ ‖En
3 ‖}‖σn‖+ Ck‖En

4 − En
0 ‖2‖σn‖

+ |(An, θn+1 − θn)|+ Ck5 + Ckh2s−3

+ k
{
‖En

1 ‖1‖En
1 ‖+ ‖En

2 ‖1‖En
2 ‖+ ‖En

5 ‖1‖En
5 ‖

}
+Hn,

then, using Lemma 2.4, relation (4.17) yields

(4.18) ReB(rn+1/2; θn+1, θn+1) ≤ ReB(rn+1/2; θn, θn) +Ck‖θn+1‖21 + Ck‖θn‖21 + Zn.

This is the main inequality that we shall use to derive the error estimate.

Step 1: Observe that (4.18), for k sufficiently small, gives

(4.19) ReB(rn+1; θn+1, θn+1) ≤ 1+Ck
1−CkReB(r

n; θn, θn) + 1
1−CkZ

n.

We apply now (4.19) for i = 1, . . . , n and get

(4.20) ReB(rn+1; θn+1, θn+1) ≤ CReB(θ0, θ0) + C

n∑

i=0

Zn−i.

So, by relation (4.20) we arrive at

(4.21) ‖θn+1‖21 ≤ C‖θ0‖21 + C

n∑

i=0

Zi.

Step 2: Our aim will be to estimate
n∑

i=0

Zi.

For this, we will provide bounds for sums involving: |(An, θn+1 − θn)|, ‖En
4 − En

0 ‖2, ‖σn‖, Hn,
and En

i , i = 1, · · · , 5 in various norms.
For general An, it holds that

|
n∑

i=0

(Ai, θi+1 − θi)| ≤ |(A0, θ0)|+
n∑

i=0

‖Ai −Ai−1‖‖θi‖+ |(An, θn+1)|.

Further by the definition of Ei
4, E

i
0 we have that

(4.22) ‖Ei
4 − Ei

0‖2 ≤ Ck2 + Chs−2,

while by Taylor expansion easily we have that

‖[Ei
4 − Ei

0]− [Ei−1
4 − Ei−1

0 ]‖2 = ‖[Ei
4 − Ei−1

4 ]− [Ei
0 − Ei−1

0 ]‖2 ≤ Ck3 + Ckhs−2,

and
‖Ci − Ci−1‖ ≤ Ck.

So, for the specific An given by (4.16), we get

‖Ai −Ai−1‖ = ‖CiEi − Ci−1Ei−1‖ ≤ ‖Ci(Ei − Ei−1)‖+ ‖Ei−1(Ci − Ci−1)‖
≤ Ck3 +Ckhs−2 + C(k2 + hs−2)k ≤ Ck3 +Ckhs−2.

Therefore, we have finally

(4.23) |
n∑

i=0

(Ai, θi+1 − θi)| ≤ C(k2 + hs−2)‖θ0‖+ C(k3 + khs−2)

n∑

i=0

‖θi‖+ C(k2 + hs−2)‖θn+1‖.
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We proceed by proving the next lemma.

Lemma 4.4. For any σi it holds that

‖σi‖ ≤ C‖θi+1‖1 + C‖θi‖1.

Proof. By the inverse inequality in Sh we arrive at

‖σi‖ ≤
∥∥∥(Rh − I)

(
z sr

s θ
i+1/2
z + iβθi+1/2

)∥∥∥+C‖θi+1/2‖1
≤ C‖θi+1‖1 + C‖θi‖1.

�

Let us estimate now the sum of H i.

Lemma 4.5. It holds that

n∑

i=0

H i ≤C‖θ0‖1
3∑

ρ=1

‖E0
ρ‖+ C‖θn+1‖1

3∑

ρ=1

‖En
ρ ‖

+

3∑

ρ=1

n∑

i=1

‖Ei
ρ − Ei−1

ρ ‖‖θi‖.

Proof. For any sequence di of smooth complex functions, easily it follows that

|
n∑

i=0

(di, θi+1 − θi)| ≤ |(d0, θ0)|+
n∑

i=0

‖di − di−1‖‖θi‖+ |(dn, θn+1)|,

while

|
n∑

i=0

B(di, θi+1 − θi)| ≤ |B(d0, θ0)|+
n∑

i=0

|B(di − di−1, θi)|+ |B(dn, θn+1)|.

Applying the above estimates for di := Ei
1, d

i := Ei
2 and di := Ei

3, we obtain the result. �

By the definitions of Zi and H i and the previous lemma it is obvious that we must estimate the
terms Ei

ρ and Ei
ρ−Ei−1

ρ . This is done at the next lemma which follows from standard calculations.

Lemma 4.6. The next estimates hold true

‖Ei
ρ − Ei−1

ρ ‖ ≤ Ck{hs−1 + k2}, ρ = 1, 2, 3,

‖En
1 ‖ ≤ C{hs + k2}, ‖En

1 ‖1 ≤ C{hs−1 + k2},
‖En

2 ‖ ≤ C{hs−1 + k2}, ‖En
2 ‖1 ≤ C{hs−2 + k2},

‖En
3 ‖ ≤ C{hs + k2},

‖En
4 ‖1 ≤ Ck2, ‖En

4 ‖2 ≤ Ck2

‖En
5 ‖ ≤ C{hs + k2}, ‖En

5 ‖1 ≤ C{hs−1 + k2}.

Note that the worst order term is ‖En
2 ‖1.

A bound for the sum of Zi is given at the next lemma.
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Lemma 4.7. For M :=
{
hs−3/2 + k2

}2
, it holds that

n∑

i=0

Zi ≤ C
[
{hs−2 + k2}‖θ0‖1 + {hs−2 + k2}‖θn+1‖1 + k{hs−2 + k2}

n+1∑

i=0

‖θi‖1 +M
]
.(4.24)

Proof. Lemma 4.6 gives

‖Ei
1‖+ ‖Ei

2‖+ ‖Ei
3‖+ ‖Ei

4 − Ei
0‖2 ≤ C{hs−2 + k2},

‖Ei
1‖1‖Ei

1‖+ ‖Ei
2‖1‖Ei

2‖+ ‖Ei
5‖1‖Ei

5‖ ≤ C{h2s−3 + k4}.
(4.25)

By Lemmas 4.5, 4.6, we obtain

(4.26)

n∑

i=0

H i ≤ C{hs−1 + k2}‖θ0‖1 +C{hs−1 + k2}‖θn+1‖1 + C

n∑

i−1

k{hs−1 + k2}‖θi‖1.

Relations (4.25), (4.23), (4.26) and the estimate of ‖σi‖ of Lemma 4.4 yield the result. �

Final Step: We replace the estimate (4.24) in (4.21).
Furthermore, we consider h ≤ Ck. This assumption is reasonable since we are in the far field

of sound propagation in range (r >> 0, which is the evolutionary variable), while the transformed
problem in space is posed on the small rectangle D = [0, 1] × [ϑ1, ϑ2]. So, for s = 4 we have

‖θn+1‖21 ≤ C‖θ0‖21 +
1

2
‖θn+1‖21 +

1

4
max

0≤i≤n+1
‖θi‖21 +G

2,(4.27)

where G := C{hs−3/2 + k2}. Taking the maximum in n, relation (4.27) finally gives

(4.28) ‖θn‖1 ≤ C‖θ0‖1 + C{hs−3/2 + k2}.
Now we can prove the next theorem that estimates the error εn = Un − U(rn) in the H1 norm.

Theorem 4.8. Under the assumptions (1.5) (upsloping bottom), if U the solution of (1.8) with
U ∈ Hs(D) the next inequalities hold true:

(1) If h ≤ Ck, then

‖εn‖1 ≤ C‖U0 − U(R0)‖1 +C{hs−3/2 + k2},
for s = τ = 4.

(2) If the bottom topography depends only on azimuth ϑ, then

‖εn‖1 ≤ C‖U0 − U(R0)‖1 + C{hs−1 + k2},
for any 2 ≤ s ≤ τ = 4.

Proof. By (4.28) and the estimates of ω we get the first inequality.
Easily (as in the semidiscrete estimate), when sr = 0 then the suboptimal term ‖En

2 ‖1 vanishes
and we obtain the second optimal error estimate. �
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