This work has been submitted to ChesterRep – the University of Chester’s online research repository

http://chesterrep.openrepository.com

Author(s): Kevin L Lamb; Roger Eston; D Corns

Title: Reliability of ratings of perceived exertion during progressive treadmill exercise

Date: 1999

Originally published in: British Journal of Sports Medicine

Version of item: Author’s post-print

Available at: http://hdl.handle.net/10034/29192
THE RELIABILITY OF RATINGS OF PERCEIVED EXERTION DURING PROGRESSIVE TREADMILL EXERCISE

Kevin L. Lamb,¹ Roger G. Eston,² David Corns²

¹University College Chester
²University of Wales

Correspondence to:
Dr K.L. Lamb, Department of Physical Education and Sports Science,
University College Chester, Parkgate Road, Chester, CH1 4BJ
Fax: 01244 392820
E-mail: k.lamb@chester.ac.uk
Abstract

Objective – The purpose of this study was to assess the test-retest reliability (repeatability) of Borg’s 6-20 rating of perceived exertion (RPE) scale using a more appropriate statistical technique than has been employed in previous investigations. The RPE scale is used widely in exercise science and sports medicine to monitor and/or prescribe levels of exercise intensity. The ‘95% limits of agreement’ technique has recently been advocated as a better means of assessing within-subject (trial-to-trial) agreement compared with traditional indicators such as Pearson and intraclass correlation coefficients.

Methods – Sixteen male athletes (mean age 23.6 ± 5.1 years) completed two identical multi-stage (incremental) treadmill running protocols over a period of 2-5 days. RPEs were requested and recorded during the final 15-seconds of each 3-minute stage. All subjects successfully completed at least four stages in each trial, allowing the reliability of RPE responses to be examined at each stage.

Results – The 95% limits of agreement (bias ± 1.96 x SD_{diff}) were found to widen as exercise intensity increased: 0.88 ± 2.02 RPE units (Stage 1), 0.25 ± 2.53 RPE units (Stage 2), -0.13 ± 2.86 RPE units (Stage 3), and -0.13 ± 2.94 RPE units (Stage 4). Pearson correlations (0.81, 0.72, 0.65 and 0.60) and intraclass correlations (0.82, 0.80, 0.77 and 0.75) decreased as exercise intensity increased.

Conclusions – The present findings question the test-retest reliability of the RPE scale when used to monitor subjective estimates of exercise intensity in progressive (or graded) exercise test situations.

Keywords: RPE ; limits of agreement analysis; graded exercise testing
Introduction

On account of its strong positive associations with physiological variables, such as oxygen uptake, heart rate, and blood lactate concentrations (typically established during continuous, incremental exercise) the rating of perceived exertion (RPE) concept is a widely accepted means of estimating exercise intensity in adults, and, to a lesser extent, in children.[1] Its validity has been claimed for different modes of exercise, including cycling [2][3], walking and running [4], stepping [5], swimming [6], and rowing [7], and its use has been advocated as a means of providing a safe and effective training intensity for aerobic exercise.[8] In the same way, RPE is also widely used in the clinical setting, particularly with cardiac patients [9] and patients receiving β-blocker therapy.[10] Recent research, however, has begun to question the efficacy of RPE in both healthy and cardiac populations [11], the indications being that RPE ratings recorded during graded exercise testing do not match the levels of relative physiologic intensity that they are assumed to.

Fundamental to this concern over the validity the RPE scale is the issue of its reliability. As a measurement tool cannot be deemed valid without it also being reliable, it is surprising that little attention has been paid to establishing the reliability (or repeatability) of ratings of perceived exertion under repeated (identical) exercise testing conditions. Instead, it has often been assumed that once subjects have been ‘introduced’ to the Borg 6-20 RPE scale via standardised instructions [12] and/or so-called ‘anchoring’ techniques [13], then their understanding of its function has been established.

On the basis of empirical evidence, the early studies by Skinner et al [2], and Stamford [14] are often referred to in support of the reliability of the RPE scale. These articles reported test-retest correlation coefficients ranging from 0.71 to 0.90, depending on the mode of exercise and whether the protocol was incremental or otherwise, that were deemed sufficiently high to indicate “consistency of results”. More recently, Wenos et al [15] reported reliability correlations of 0.96, 0.97 and 0.72 at intensities of 30%, 50%, and
70% of peak oxygen uptake, respectively, during a discontinuous walking protocol. However, when the same three exercise intensities were applied in separate constant load protocols, the reliability correlations were less impressive (0.53, 0.94, and 0.67, respectively).

A feature common to the limited research on RPE reliability is the lack of regard given to the appropriateness of the statistical techniques used to quantify reliability. A recent movement lead by British exercise scientists [16][17][18][19] has highlighted the mis-use of certain statistics, especially the bivariate correlation, as indicators of reliability. This concern is applicable to the RPE scale as it has almost always been considered to provide interval level data that subsequently has been analysed with parametric statistics. As correlation coefficients do not actually assess the level of agreement between repeated measures (they quantify the degree of association), it is not yet known whether the RPE scale yields repeatable values when applied in a typical test-retest investigation. The 95% Limits of Agreement (LoA) technique [20] is the more appropriate statistical approach as it allows reliability judgements to be based on the size of the within-subjects (trial-to-trial) variability, and not the relative position of scores across the two trials (whether the subject with the highest score in trial 1 also has the highest in trial 2, or whether the same subject has the lowest score in both trials, and so on). Accordingly, the purpose of the present study is to examine the reliability of the RPE scale during standardised and replicated exercise conditions, using the LoA form of statistical analysis.

Method

Subjects

Sixteen healthy male athletes from the University of Wales volunteered to take part in this study (mean age 23.6 ± 5.1 years, height 1.80 ± 0.11 m and body mass 73.5 ± 9.4 kg). Subjects were habitually engaged in middle- or long-distance training and club-level
competition, either as runners or rowers. All subjects abstained from caffeine and strenuous physical activity on the day of each test, and completed an informed consent form and a health questionnaire just prior to testing. Approval for the study was granted by the Ethics Committee of the School of Sport, Health and Physical Education Sciences at the University of Wales.

Procedures

Subjects attended the laboratory on two occasions, each time being subjected to a graded exercise test (GXT). The GXTs comprised two identical running protocols on an electronically driven Powerjog (GM200) treadmill. The protocol was extracted from the physiological testing guidelines of the British Association of Sport and Exercise Sciences [21] and incorporated a 5-min warm-up at 3.13 m/s (7mph) at 0% gradient, followed by 3 min at 3.58 m/s (8mph). Thereafter, the velocity remained constant whilst the gradient was increased in increments of 2.5% every 3 min. For each session, heart rate and RPE were recorded in the last 15 seconds of each 3-minute increment until either an RPE of 17 or volitional exhaustion was reached.

In the initial test, subjects were familiarised with the treadmill and introduced to the Borg 6-20 RPE Scale.[12] Prior to each exercise session, subjects were given standardised RPE instructions [22] to read and seek clarification if necessary. In this way, the RPE scale was being used in its so-called *estimation* or response mode.[23]

The testing sessions took place no more than five days and no less than two days apart. Height and body mass data were collected at the beginning of the initial session using standard laboratory procedures. Subjects’ heart rates (HR) were measured at rest (after remaining supine for 5-minutes) and during exercise via telemetry (Polar, Beat), and were subsequently expressed as a percentage of maximal heart rate reserve (%MHRR) for each exercise stage. The ambient temperature in the laboratory over the course of the
study was 18 to 23 °C, and for each test cool air was directed onto the subject by a pedestal fan (Pifco 1004) for added comfort. The RPE scale was positioned within sight and reach throughout each exercise bout.

Statistical Analysis

Data were analysed with a two-way ANOVA (trials x levels) with repeated measures to assess the variability of RPE responses across trials and exercise intensities. Post-hoc analysis utilised Bland & Altman’s [20] 95% limits of agreement procedure to examine the test-retest reliability of the RPE ratings recorded for each of the first four exercise intensities (as all subjects completed at least four stages). This technique requires the calculation of the mean difference (bias) between Trial 1 (T1) and Trial 2 (T2) and ± 1.96 x standard deviation of these differences (the 95% limits). Assuming that the test-retest differences are: (i) not significantly greater than zero, (ii) normally distributed and (iii) unrelated to the mean of the two trials (homoscedastic), these 95% limits form the reliability statistics. Accordingly, condition (i) was examined using paired t-tests (with a Bonferroni adjustment of alpha to .0125), condition (ii) with the K-S Lilliefors statistic, which tests whether the sample data is from a normal population, and condition (iii) with a Pearson correlation coefficient.

Following the recommendations of Atkinson & Nevill [19], the reliability analysis was extended with the calculation of both the intraclass correlation (ICC) and Pearson correlation coefficients. These are the statistics most often used to assess the reliability of the rating of perceived exertion scale. The ICC was calculated from repeated measures ANOVA and was of the type that accounted for trial-to-trial variability [ICC = (MSs - MSw)/MSs, where MSw = (SS_{Trials} + SS_{Interaction}) / (df_{Trials} + df_{Interaction})]. As a secondary marker of the consistency of the exercise protocol over the two trials (and therefore as a check on whether there was a systematic bias between trials) the HR responses were also analysed.
with repeated measures ANOVA and, as with RPE responses, paired t-tests for each exercise stage. All data analyses were performed using SPSS 8.0 for Windows.

Results

The mean RPE values recorded for each exercise stage in T1 and T2 are presented in Table 1. Analysis of variance revealed significant main effects for levels (F = 358.3, \(p < 0.001 \)), and non-significant effects for trials (F = 0.59, \(p > 0.4 \)). The levels x trials interaction, however, was significant (F = 5.8, \(p < 0.01 \)), due solely to significant (\(p < 0.005 \)) bias being present at the lowest exercise intensity (Stage 1), though the difference is less than one unit. For Stages 2-4, the differences between means were not significantly greater than zero.

The normality of the test-retest differences in RPE values were confirmed for each exercise intensity (K-S Lilliefors statistics; \(p > 0.05 \)). Likewise, these differences were found to be homoscedastic, with correlations between the absolute differences and the mean of the two trials being small and non-significant (see Table 2). Consequently, Table 2 shows the 95% LoA analyses, and, for comparative purposes, the ICC and Pearson correlation coefficients.

Heart rate responses did not vary significantly over trials (F = 0.6, \(p > 0.10 \)), but showed an expected increase across levels (F = 198.7, \(p < 0.001 \)). The trials x levels interaction was not significant (F = 2.1, \(p > 0.10 \)) and Table 3 shows that the replicated exercise protocol elicited relative heart rates free of significant systematic bias at each intensity level.
Discussion

The present data provide a unique perspective on the repeatability of ratings of perceived exertion during progressive treadmill exercise. Adopting Nevill & Atkinson’s [17] “worst case scenario” approach to interpreting LoA analyses, an athlete in the present study reporting an RPE of 12 during Stage 2 in trial 1, could possibly have reported a value as high as 15, or as low as 10 during the same stage a few days later (values rounded-up). Likewise, a first trial RPE of 16 during Stage 4 could have been as high as 19, or as low as 13 in trial 2. As this type of analysis is new to perceived exertion research, there is no scope for comparison with previously published findings. However, given the circumstances of the present study, such a degree of ‘uncertainty’ observed in relatively active subjects must raise questions about the reliability of RPE (and therefore its validity) in less active or exercise-naïve people.

The more traditional marker of reliability calculated along side the LoA (the Pearson correlation coefficient) does provide scope for placing the present findings into context. Moreover, three out of the four of this study’s exercise intensities (stages 2-4) lend themselves to a similarly unfavourable interpretation as the LoA. Skinner et al [2] reported what can only be an overall Pearson correlation of 0.80 for incremental cycling exercise (the data from all stages being combined), but did not provide statistics on RPE reliability for each intensity across the range used. Interestingly, the same type of analysis on the present data yields a correlation of 0.86. Whilst Skinner et al, considered their finding to reflect “sufficiently high reliability”, Noble & Robertson [13] challenged this on the grounds of the 36% of unexplained variance in the relationship. Stamford’s [14] claim to have established the reliability of the RPE scale is questionable not only from a statistical perspective, but also from a design perspective. Whilst he utilised different modes of exercise (treadmill walking and jogging, cycling, and stool stepping) and variable intensities in his study, it does not seem that (for each mode) the RPE data were collected
in an identical manner over the ‘repeated’ trials.

In the present study, the mean %MHHR for each exercise intensity was very similar across the two trials. The difference at the lowest intensity was the largest, reflecting a systematic bias of about 2.3%, though non-significant. However, in terms of practical significance, such variability is not ‘large’. Of course, a finding of zero bias between repeated measures does not mean there was no within-subjects variation (random error) in heart rates. Even though the exercise protocol and measurements (potential sources of random error) were controlled, considerable random error (due to biological variation) is to be anticipated. [19] Furthermore, even if a systematic bias was present generally, the relationship between RPE and heart rate is not so strong as to be causal, that is, it could not be assumed that a given %MHRR bias (in either direction) would elicit a corresponding RPE bias.

With regard to the RPE correlations in the present study, both forms decline in magnitude as the exercise intensity increases, suggesting decreasing reliability. At the same time, the random error can be seen to increase via the 95% LoA becoming wider. Whilst such concordance (in terms of the trends) is somewhat reassuring, the case of the lowest exercise intensity exemplifies well how inappropriate the two correlation coefficients can be as measures of reliability. Here it is clear that the ‘high’ Pearson and intraclass correlations (0.81 and 0.82, respectively) mask the significant bias (0.88 RPE units), whose existence Bland & Altman [20] would argue (from a medical perspective) is sufficient to render the current data useless for the purpose of assessing reliability. These opposing interpretations reinforce the need for sports and exercise scientists to understand statistical techniques and recognise their importance in the wider process of measurement and evaluation.

The 95% LoA method of analysis indicates a degree of test-retest variability of up to almost three RPE units, or in qualitative terms, perceptions changing (in either direction)
from, for example, “extremely light” to harder than “very light”, “light” to harder than “somewhat hard”, or “hard” to harder than “very hard”. Such inconsistency may have particular relevance for situations in which RPE is used as a dependent variable in some form of intervention study, or where it is used as a surrogate measure of heart rate to reflect an individual’s state of metabolic stress and/or exercise tolerance, or as an adjunct indicator (or precursor) of physical work capacity or maximal oxygen uptake. For example, Noble [24] cites a ‘rule of thumb’ that coronary heart disease patients who reach an RPE rating of 15 will not complete more than one more stage of the Bruce treadmill protocol. If the reliability of the scale for such patients is no better than that of the current sample, the above marker for test termination may be equivalent to a rating as low as 12 for some, or as high as 18 for others. Likewise, RPE unreliability would undermine the efficacy of perceptually-based sub-maximal exercise protocols, such as the Sjostand cycle test and the perceptually-based run test, described by Noble & Robertson.[13] With these protocols, improvements in physical work capacity (PWC) or running speed following aerobic training are estimated on the basis of a criterion RPE of 15; the PWC/running speed at RPE 15 pre-training being compared to the PWC/running speed at RPE 15 post-training.

From a methodological perspective, the present study did not allow any ‘improvements’ in reliability to occur via a repeated exposure to the RPE scale. It is unknown whether a third, or even fourth trial, would have yielded narrower (better) limits of agreement as a consequence of the subjects becoming more fully habituated to the RPE concept. In addition, no attempt was made to employ an ‘anchoring’ technique analogous to that described recently for cycling exercise by Noble & Robertson.[13] Whilst no empirical evidence has been published to support the effectiveness of such a preparatory technique, it does seem to have face validity and deserves to be investigated further.

In conclusion, the present findings cast doubt on the test-retest reliability of the
established 6-20 Borg RPE scale for estimating exercise effort during progressive exercise. In adopting a more appropriate form of statistical analysis than has previously been used with RPE data (the 95% LoA), trained male athletes were found to differ in their responses to repeated exercise trials by as much as three RPE units. The implication of this for other trained and non-trained people is the prospect of a tool that is invalid for use in exercise testing situations. Additional research is needed to verify these findings in different exercise situations (with different samples) and to assess the effectiveness of multiple exposures (or habituation) to the scale in enhancing its reliability.

References

7. Marriott HE, Lamb KL. The use of ratings of perceived exertion for regulating

14 Stamford BA. Validity and reliability of subjective ratings of perceived exertion during work. *Ergonomics* 1976; **19**: 53-60.

17 Nevill AM, Atkinson G. Assessing agreement between measurements recorded

"Take home message":

In adopting more appropriate methods of analysis than previously utilised, the test-retest reliability of ratings of perceived exertion for estimating exercise effort during incremental (graded) exercise has been found to be suspect. Users of this scale are advised to assess for themselves the reliability of the scale before accepting its validity.