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How do numerical methods perform for delay
differential equations undergoing a Hopf bifurcation?

Neville J. Ford & Volker Wulf*
September 30, 1999

Abstract
In this paper we consider the numerical solution of delay differential equations
(DDEs) undergoing a Hopf bifurcation. The aim is to understand what will happen
when simple standard numerical methods are used to obtain an approximate solu-
tion. We present three distinctive and complementary approaches to the analysis
which together provide us with the result that 9 methods applied to a DDE will
retain Hopf bifurcations and preserve their type, for sufficiently small A > 0.

1 Introduction

A major concern of numerical analysts is the development of reliable algorithms to solve
differential equations. The aim is to provide algorithms that consistently provide good
quality solutions to a wide class of equations. We want to be able to predict when the
algorithms will perform well, and when they will fail.

If a differential equation has to be solved only over a short (finite) time interval, the
main issues are convergence of the numerical solution and the order of the method. On
the other hand, if long term behaviour of solutions (over infinite time intervals) is of more
interest, then the errors may grow, and it may be impossible to prove that the numerical
solution is close to the true solution. In this event, the desire to preserve qualitative
behaviour may be more important. One might seek to show that both the exact solution to
the problem and the numerical solution tend to zero as t — oo, that both exhibit the same
stability properties for particular solutions, or that both exhibit periodic or even chaotic
solutions. Unfortunately convergence of a method over finite intervals does not guarantee
persistence of long term characteristics of solutions in the numerical approximation. The
analysis of asymptotic stability of equilibrium solutions is a very well-established concern
of the numerical analyst; the analysis of periodic solutions is less well understood and
has been considered by several authors recently (see, for example, [12],[16, Chp. 6 and
references]).

In this paper we investigate the long term properties of numerical approximations to
the solutions of the scalar delay differential equation

y(t)=fly).yt—7).7), t>0, yt)=¢(), -7<t<0, (1.1)
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Figure 1: Roots of the characteristic equation moving into the right half of the complex
plane as the parameter A changes. The shaded region in the left picture is the stability
region of the zero solution of the delay logistic equation (here for all A € C). The arrow
depicts the path of A € [1,2] and the right picture shows the corresponding path of some
of the roots as they move into the right half plane.

where 7 > 0 is a constant time lag and ) is a real parameter and we assume that y(t) = 0
is an equilibrium solution for all A, i.e. f(0,0,A) = 0. A usual starting point for the
analysis of long-term behaviour of solutions is to consider the values of A for which the
zero solution of (1.1) is asymptotically stable. This may be determined by looking at the
roots of the characteristic equation

d(lu'a )‘) i a()‘) - B(A)677M7 (1'2)
where
0 9,
a(A) = %f(o,o, A), B = mf(oaoa A). (1.3)

If all the roots of (1.2) have negative real parts, then the zero solution of (1.1) is asymp-
totically stable. Obviously as the parameter A\ varies some of the roots of (1.2) might
leave the left half of the complex plane and y(t) = 0 becomes unstable. For example,
consider the delay logistic equation

y'(1) = =yt = 1)(1 +y(t)), (1.4)
with characteristic equation
0=+ de™" (1.5)

It can be shown that for all A € (0,7/2) all roots of (1.5) have negative real parts and
consequently y(¢) = 0 is asymptotically stable (see, e.g., [10]). As A moves beyond /2
a pair of complex conjugate roots leaves the left half plane (see Figure 1). For A = 7/2
a pair of complex conjugate roots of (1.5) lies on the imaginary axis. The zero solution
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of the linear equation is stable but not asymptotically stable for this value of A, but
now the stability of the zero solution of (1.4) cannot be determined from looking at roots
of (1.5) but one needs to take into account the nonlinear parts of equation (1.4), the linear
stability theory breaks down here. For A > 7/2 the zero solution is unstable but it can
be shown that neighbouring solutions remain bounded and become eventually periodic as
t — oo. In fact what happens is that in Equation (1.4) a Hopf bifurcation occurs as A
passes through 7/2. This is a genuinely nonlinear feature of (1.4). Hopf bifurcations are
not found in linear problems (nor, indeed, in scalar ordinary differential equations).

Hopf bifurcations in equations of type (1.1) are quite well understood. On the other
hand the behaviour of numerical approximation methods applied to such equations has
had little attention so far. The purpose of this paper is to provide some insight into what
happens when numerical methods are applied to a problem that has a Hopf bifurcation:
does the bifurcation persist in the approximation and can the numerical solution be relied
upon in a neighbourhood of the bifurcation point?

We say Equation (1.1) undergoes a Hopf bifurcation at the parameter value A, if the
following conditions are met (see [2, Chp. X]):

H1 f is a C*-smooth mapping from R?® into R and (0,0, ) = 0 for all A € R.

H2 d(p, A\.) has a pair of simple complex conjugate roots 110 = Fiwp, wy > 0 and all
other roots of (1.2) have negative real parts bounded away from zero.

H3 Re(y)(A)) # 0, where p1(\) is the branch of roots of (1.2) with 1 (\,) = iwy.

If the above conditions hold then for all A in a one-sided neighbourhood of A, there
exists an invariant periodic orbit surrounding the origin. The periodic orbit is attractive
(repelling) if the zero solution is asymptotically stable (unstable) for A = A,. Since at
A the zero solution is a nonhyperbolic equilibrium its stability is determined by the
nonlinear terms of (1.1). This leads to the definition of a stability coefficient (based upon
the nonlinear terms) whose sign determines the stability of the periodic orbit. For a more
in-depth discussion on Hopf bifurcations we refer to the relevant chapters in [2, 11, 13].

If one knew in advance that an equation had a periodic solution then there are special
methods presented in the literature for finding a numerical approximation to the solution.
(See, for example, the papers [3, 4, 15].) We adopt a different approach because we are
interested in establishing how reliable are simple numerical schemes in this situation. The
question we set out to investigate is: how does a variation of the parameter A\ affect the
numerical approximation of system (1.1) and does the Hopf bifurcation “persist” in some
way? In other words, will a straightforward application of a simple numerical method
display the true behaviour of the solution close to a Hopf bifurcation?

As an illustration we consider the ¥-methods applied to (1.1) with stepsize h = 7/m,
m € N given by

Yn+1 = Yn + h{(l - ﬁ)f(yn:ynfm: )‘) + 79f(yn+1: yn+17m)}; n Z 1: (1 6)
Un = ¢(nh), —-m<n<0, '

where ¥ € [0,1]. This is the natural extension of the ¥-methods for ODEs to the DDE
case. We restrict the stepsize to integer fractions of the delay in order to avoid the need to
interpolate lagged values. We want to establish whether the numerical scheme exhibits a

3



Hopf bifurcation, and if so, at what value of the parameter the bifurcation arises. Finally
we want to consider whether the nature of the bifurcation (subcritical or supercritical) is
preserved in the approximation.

In the remainder of the paper we present three different approaches to the above
problem.

1. First we consider how far the existing (linear) stability analysis can help. In Sec-
tion 2 we use the boundary locus technique, which is known from the linear stability
analysis of numerical methods to identify parameter points at which a Hopf bifur-
cation could take place.

2. Secondly (see Section 3) we undertake a direct bifurcation analysis of the difference
equation (1.6) with fixed h and varying A. This leads to the task of checking
Neimark-Sacker bifurcation conditions in Equation (1.6). We illustrate how this
can be done and conclude that, while the results we have obtained in this way are
entirely satisfactory, the approach leads to complicated algebra which means that
it is hard to obtain good general results. This motivates our introduction of an
alternative approach.

3. A third approach (in Section 4) tries to avoid this algebraic complexity by using a
projection method. We “project” the DDE onto a system of ODEs and are able to
make use of known results on the preservation of Hopf bifurcations in ODEs in the
context of numerical approximation of DDEs.

Finally we indicate how the results we have obtained for simple numerical methods
can be generalised to apply to much wider classes of method. It turns out that our
calculations, although confined to the simplest prototype numerical schemes, provide the
evidence needed to ensure that Hopf bifurcations are preserved in other numerical schemes.

2 Applying the Boundary Locus Method

In this section we seek to obtain information based on the existing linear stability theory.
We will apply the boundary locus method (see [1, 14]) to plot the boundaries of the regions
(in the parameter space) for which the equilibrium solution is asymptotically stable. It is
known that Hopf bifurcations arise on the boundary of the stability region at those points
where two characteristic values simultaneously leave the left half plane. The boundary
locus of (1.1) is the set

0D = {(a,p) : v € R,iv —a — Be ™" =0}, (2.1)

where o and (3 are in the parameter space of the equation. If we are interested in a system
that depends only on one parameter A, one usually assumes A € C. For instance for the
delay logistic equation we have a(A) = —\ and §(\) = 0 and

D4y ={N € C: A= —ive”, —oco < v < 0o}. (2.2)

For delay equations the boundary locus dD subdivides the parameter plane into regions.
For all parameter values in one region the number of roots of the characteristic equation
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with positive real part is constant. In particular where this number is zero the parameters
lie in the stability region of the equation (see Figure 1). Similarly a boundary locus can
be defined for the discretization (1.6).

8Dm = {(aaﬁ) 30 € [—71',77'],2: = 6i0a

ot om _p(1 2 9)(azm 4 B) — ho(azmt 4 B2) =0}, (%)

For each m, dD,, partitions the parameter space into regions so that the number of roots
of modulus greater than one of the characteristic polynomial corresponding to (1.6) is
constant in each region. The region of asymptotic stability of the problem is therefore
the region where the number is zero.

Every point on the boundary locus corresponds to a parameter value at which there
is a root of the characteristic equation exactly on the imaginary axis (in the case of the
DDE) or on the unit circle (in the case of the discrete scheme). For a Hopf bifurcation,
we require two such roots to arise for the same parameter value, and this can be observed
as a parameter value where the boundary locus curve crosses itself.

In [6] we showed that for certain numerical methods the two curves approximate
each other for all equations where the linearization yields a pure delay equation. As
a consequence we were able to prove that if a Hopf bifurcation in the DDE occurs for
some parameter value A, then there exists a nearby parameter value \,, where a Hopf
bifurcation occurs in the numerical approximation. For strongly stable linear multistep
methods we have \,, = A\, + O(hP), where p is the order of the method.

The approach is as follows: we assume that the original equation has a Hopf bifurcation
for a particular parameter value A,. In this case, the boundary locus for the DDE crosses
itself on the x-axis at A\,. We establish that the boundary locus for the numerical scheme
also crosses itself at A, close to A,, that the point of intersection lies on the real axis, and
that adjacent to the value \,, on the real axis is an interval of stability and an interval of
instability for the numerical scheme.

For a linear problem the boundary locus is sufficient to determine the stability be-
haviour of solutions of the equation at particular parameter values. However, for non-
linear problems, the boundary locus provides us with the parameter values at which the
linearised equation loses its stability. What happens to the nonlinear problem at this
point requires analysis of the nonlinear parts of equation.

Remarks:

1. One could extend the analysis in a natural way to consider other classes of nonlinear
delay differential equation

2. The authors have provided a similar analysis for the application of Runge Kutta
methods to delay differential equations (see [8]).

3 Neimark-Sacker Bifurcation Analysis

In this section we consider how one would perform a direct bifurcation analysis of the
difference equation (1.6). This will enable us to determine how the nonlinearity of the
problem affects its behaviour at a Hopf bifurcation.

For each m € N we can define a map F), : R™*! x R — R™*! by

Y™ = FL (Y™, ), (3.1)



where Y"*' =Y, i=1,...,m and Y""" is defined as the solution of

Y = Y (1= ) F(V Y A) + F (VLY L0, (3.2)

0+ m>

With h = 7/m we have Y” = y,,_;, where {y,} is the solution of (1.6) and is therefore

equivalent to iterating (3.1). For ¢ = 0 (Explicit Euler) the authors showed in [7] the
following

Theorem 3.1 Assume that the differential equation (1.1) undergoes a supercritical (sub-
critical) Hopf bifurcation at the parameter value ., then for sufficiently small step sizes
the map (3.1) undergoes a supercritical (subcritical) Neimark-Sacker bifurcation at a pa-
rameter value A\, = A, + O(h).

A Neimark-Sacker bifurcation or Hopf bifurcation for maps is characterized by the
following: given a parameter dependent map on R*, n > 2,

z— ANz + G(z, N) (3.3)
with
N1 G is a C*¥-smooth mapping, k > 2, from R* x R into R*, G(0, \) = 0, G,(0,\) =0,
reR
N2 A()*) has a complex conjugate pair of eigenvalues 7,5 = e*®  while all other

eigenvalues have modulus strictly less than one.

N3 r'(\*) # 0, where r(A) is the modulus of the branch of eigenvalues with r(\*) = 1,
ie. 7(A) = [12(M)].

Under the above hypotheses the map (3.3) has an invariant closed curve of radius O(y/(|\*—
A])) surrounding the origin for all A in a one-sided neighbourhood of A*. The closed curve
is attracting (repelling) if zero is an asymptotically stable (unstable) fixed point of (3.3)
at A = A*. Since at A = \* zero is a nonhyperbolic fixed point the nonlinear part G-, A*)
determines the attractivity of the bifurcating invariant curve (see, e.g., Kuznetsov [13]).
Theorem 3.1 shows that for m large enough each map (3.1) undergoes a Neimark-Sacker
bifurcation with A* = A,,.
Remarks.
Theorem 3.1 applies only to the Euler forward method. The main difficulty in extending
the result to more general methods lies in determining the stability of the bifurcating
closed curves. This requires us to determine the sign of quite complicated expressions
involving the nonlinear part G. For the Euler forward method £, is explicitly given but
for ¥ # 0 say, F,, and therefore GG is known only implicitly making the analysis even more
complicated.
We have shown (see [5]) that the approach can be extended for specific methods applied
to particular problems, although the calculations remain complicated. In the examples we
have calculated explicitly, the sign of the stability coefficient is preserved for sufficiently
small A > 0.

The computational complexity of these calculations leads us to consider whether im-
proved insight can be obtained through a more innovative approach.
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4 A Projection Approach

The numerical solution of a scalar DDE yields a discrete system of the same general form
as arises in the numerical solution of a system of ordinary differential equations. We aim
to use this property and known analysis for ODEs under discretisation to derive results
that were difficult to derive directly for the DDE.

We start with the map (3.1) for the Euler Forward method which has the form

Vit = Y (VLY

Yt =y
S (4.1)
Yot o= Yo,

We seek a system of ODEs for which the same system (4.1) is the Euler forward
discretization. One easily finds that the system

Vi o= (YY)
v = bV - V) w2

Y! = h (Y — Y

discretized with stepsize h yields exactly (4.1). As we have shown in [17] the system (4.2)
undergoes a Hopf bifurcation of the same type as the DDE (1.1) at some parameter value
Am = A + O(h). We can now use known results on the persistence of Hopf bifurcations
in ODEs under approximations to obtain the result that (4.1) undergoes a Neimark-
Sacker bifurcation at A, = A, + O(h) (see, e.g., Hairer & Lubich [9]). We therefore have
reconfirmed Theorem 3.1 using known results from ODE theory and without recourse to
complicated calculations.

It is natural to seek to generalise this result to more realistic methods, and one might
suppose that a similar approach will yield good results. Unfortunately it turns out that,
even for ¥ methods apart from Euler forward, it is not possible to derive an exactly
equivalent system of ODEs and therefore one must consider the effect of a perturbation
between the ODE method and the DDE method. We have explored various approaches
and have concluded that the following is the most useful (see [7] for further details):

The principal aim at this stage is to establish the sign of the stability coefficient of
the approximate scheme. Our existing analysis (in this section and in the previous one)
has shown that the sign of the stability coefficient (for small enough h > 0) is correct
for the Euler forward method. We write some other numerical scheme in the form of
a perturbation of the Euler forward scheme and we consider the stability coefficient of
the perturbed scheme. The key question is whether the perturbation in the scheme can
cause the sign of the stability coefficient to change. The paper [7] shows how the analytical
argument is constructed and allows us to conclude that for all  methods (as well as certain
other numerical methods) the sign of the stability coefficient (as h — 0) is unchanged and
the numerical approximation will display a Hopf bifurcation of corresponding type to the
one found in the original DDE.
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