
   
 
 
 
 

This work has been submitted to ChesterRep – the University of Chester’s 
online research repository 

 
http://chesterrep.openrepository.com 

 
 
 
Author(s): Neville J Ford; Volker Wulf  
 
 
 
Title: How do numerical methods perform for delay differential equations undergoing 
a Hopf bifurcation? 
 
 
Date: 1999 
 
 
Originally published in: 
 
 
Example citation: Ford, N. J., & Wulf, V. (1999). How do numerical methods perform 
for delay differential equations undergoing a Hopf bifurcation. Numerical Analysis 
Reports: 351. Manchester: Manchester Centre for Computational Mathematics 
 
 
Version of item: Author’s post-print 
 
 
Available at: http://hdl.handle.net/10034/13243 



ISSN 1360-1725
UMIST

How do numerical methods perform for delaydi�erential equations undergoing a Hopf bifurcation?Neville J. Ford & Volker WulfNumerical Analysis Report No. 351A report in association with Chester College
Manchester Centre for Computational MathematicsNumerical Analysis ReportsDEPARTMENTS OF MATHEMATICSReports available from:Department of MathematicsUniversity of ManchesterManchester M13 9PLEngland And over the World-Wide Web from URLshttp://www.ma.man.ac.uk/MCCM/MCCM.htmlftp://ftp.ma.man.ac.uk/pub/narep



How do numerical methods perform for delaydi�erential equations undergoing a Hopf bifurcation?Neville J. Ford & Volker Wulf�September 30, 1999AbstractIn this paper we consider the numerical solution of delay di�erential equations(DDEs) undergoing a Hopf bifurcation. The aim is to understand what will happenwhen simple standard numerical methods are used to obtain an approximate solu-tion. We present three distinctive and complementary approaches to the analysiswhich together provide us with the result that # methods applied to a DDE willretain Hopf bifurcations and preserve their type, for su�ciently small h > 0.1 IntroductionA major concern of numerical analysts is the development of reliable algorithms to solvedi�erential equations. The aim is to provide algorithms that consistently provide goodquality solutions to a wide class of equations. We want to be able to predict when thealgorithms will perform well, and when they will fail.If a di�erential equation has to be solved only over a short (�nite) time interval, themain issues are convergence of the numerical solution and the order of the method. Onthe other hand, if long term behaviour of solutions (over in�nite time intervals) is of moreinterest, then the errors may grow, and it may be impossible to prove that the numericalsolution is close to the true solution. In this event, the desire to preserve qualitativebehaviour may be more important. One might seek to show that both the exact solution tothe problem and the numerical solution tend to zero as t!1, that both exhibit the samestability properties for particular solutions, or that both exhibit periodic or even chaoticsolutions. Unfortunately convergence of a method over �nite intervals does not guaranteepersistence of long term characteristics of solutions in the numerical approximation. Theanalysis of asymptotic stability of equilibrium solutions is a very well-established concernof the numerical analyst; the analysis of periodic solutions is less well understood andhas been considered by several authors recently (see, for example, [12],[16, Chp. 6 andreferences]).In this paper we investigate the long term properties of numerical approximations tothe solutions of the scalar delay di�erential equationy0(t) = f(y(t); y(t� �); �); t � 0; y(t) = �(t); �� � t � 0; (1.1)�Department of Mathematics, Chester College, UK1
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ΟFigure 1: Roots of the characteristic equation moving into the right half of the complexplane as the parameter � changes. The shaded region in the left picture is the stabilityregion of the zero solution of the delay logistic equation (here for all � 2 C ). The arrowdepicts the path of � 2 [1; 2] and the right picture shows the corresponding path of someof the roots as they move into the right half plane.where � > 0 is a constant time lag and � is a real parameter and we assume that y(t) � 0is an equilibrium solution for all �, i.e. f(0; 0; �) = 0. A usual starting point for theanalysis of long-term behaviour of solutions is to consider the values of � for which thezero solution of (1.1) is asymptotically stable. This may be determined by looking at theroots of the characteristic equationd(�; �) = �� �(�)� �(�)e���; (1.2)where �(�) = @@y(t)f(0; 0; �); �(�) = @@y(t� �)f(0; 0; �): (1.3)If all the roots of (1.2) have negative real parts, then the zero solution of (1.1) is asymp-totically stable. Obviously as the parameter � varies some of the roots of (1.2) mightleave the left half of the complex plane and y(t) � 0 becomes unstable. For example,consider the delay logistic equationy0(t) = ��y(t� 1)(1 + y(t)); (1.4)with characteristic equation 0 = �+ �e��: (1.5)It can be shown that for all � 2 (0; �=2) all roots of (1.5) have negative real parts andconsequently y(t) � 0 is asymptotically stable (see, e.g., [10]). As � moves beyond �=2a pair of complex conjugate roots leaves the left half plane (see Figure 1). For � = �=2a pair of complex conjugate roots of (1.5) lies on the imaginary axis. The zero solution2



of the linear equation is stable but not asymptotically stable for this value of �, butnow the stability of the zero solution of (1.4) cannot be determined from looking at rootsof (1.5) but one needs to take into account the nonlinear parts of equation (1.4), the linearstability theory breaks down here. For � > �=2 the zero solution is unstable but it canbe shown that neighbouring solutions remain bounded and become eventually periodic ast ! 1. In fact what happens is that in Equation (1.4) a Hopf bifurcation occurs as �passes through �=2. This is a genuinely nonlinear feature of (1.4). Hopf bifurcations arenot found in linear problems (nor, indeed, in scalar ordinary di�erential equations).Hopf bifurcations in equations of type (1.1) are quite well understood. On the otherhand the behaviour of numerical approximation methods applied to such equations hashad little attention so far. The purpose of this paper is to provide some insight into whathappens when numerical methods are applied to a problem that has a Hopf bifurcation:does the bifurcation persist in the approximation and can the numerical solution be reliedupon in a neighbourhood of the bifurcation point?We say Equation (1.1) undergoes a Hopf bifurcation at the parameter value �� if thefollowing conditions are met (see [2, Chp. X]):H1 f is a Ck-smooth mapping from R3 into R and f(0; 0; �) = 0 for all � 2 R.H2 d(�; ��) has a pair of simple complex conjugate roots �1;2 = �i!0, !0 > 0 and allother roots of (1.2) have negative real parts bounded away from zero.H3 Re(�01(��)) 6= 0, where �1(�) is the branch of roots of (1.2) with �1(��) = i!0.If the above conditions hold then for all � in a one-sided neighbourhood of �� thereexists an invariant periodic orbit surrounding the origin. The periodic orbit is attractive(repelling) if the zero solution is asymptotically stable (unstable) for � = ��. Since at�� the zero solution is a nonhyperbolic equilibrium its stability is determined by thenonlinear terms of (1.1). This leads to the de�nition of a stability coe�cient (based uponthe nonlinear terms) whose sign determines the stability of the periodic orbit. For a morein-depth discussion on Hopf bifurcations we refer to the relevant chapters in [2, 11, 13].If one knew in advance that an equation had a periodic solution then there are specialmethods presented in the literature for �nding a numerical approximation to the solution.(See, for example, the papers [3, 4, 15].) We adopt a di�erent approach because we areinterested in establishing how reliable are simple numerical schemes in this situation. Thequestion we set out to investigate is: how does a variation of the parameter � a�ect thenumerical approximation of system (1.1) and does the Hopf bifurcation \persist" in someway? In other words, will a straightforward application of a simple numerical methoddisplay the true behaviour of the solution close to a Hopf bifurcation?As an illustration we consider the #-methods applied to (1.1) with stepsize h = �=m,m 2 N given byyn+1 = yn + hf(1� #)f(yn; yn�m; �) + #f(yn+1; yn+1�m)g; n � 1;yn = �(nh); �m � n � 0; (1.6)where # 2 [0; 1]. This is the natural extension of the #-methods for ODEs to the DDEcase. We restrict the stepsize to integer fractions of the delay in order to avoid the need tointerpolate lagged values. We want to establish whether the numerical scheme exhibits a3



Hopf bifurcation, and if so, at what value of the parameter the bifurcation arises. Finallywe want to consider whether the nature of the bifurcation (subcritical or supercritical) ispreserved in the approximation.In the remainder of the paper we present three di�erent approaches to the aboveproblem.1. First we consider how far the existing (linear) stability analysis can help. In Sec-tion 2 we use the boundary locus technique, which is known from the linear stabilityanalysis of numerical methods to identify parameter points at which a Hopf bifur-cation could take place.2. Secondly (see Section 3) we undertake a direct bifurcation analysis of the di�erenceequation (1.6) with �xed h and varying �. This leads to the task of checkingNeimark-Sacker bifurcation conditions in Equation (1.6). We illustrate how thiscan be done and conclude that, while the results we have obtained in this way areentirely satisfactory, the approach leads to complicated algebra which means thatit is hard to obtain good general results. This motivates our introduction of analternative approach.3. A third approach (in Section 4) tries to avoid this algebraic complexity by using aprojection method. We \project" the DDE onto a system of ODEs and are able tomake use of known results on the preservation of Hopf bifurcations in ODEs in thecontext of numerical approximation of DDEs.Finally we indicate how the results we have obtained for simple numerical methodscan be generalised to apply to much wider classes of method. It turns out that ourcalculations, although con�ned to the simplest prototype numerical schemes, provide theevidence needed to ensure that Hopf bifurcations are preserved in other numerical schemes.2 Applying the Boundary Locus MethodIn this section we seek to obtain information based on the existing linear stability theory.We will apply the boundary locus method (see [1, 14]) to plot the boundaries of the regions(in the parameter space) for which the equilibrium solution is asymptotically stable. It isknown that Hopf bifurcations arise on the boundary of the stability region at those pointswhere two characteristic values simultaneously leave the left half plane. The boundarylocus of (1.1) is the set@D = f(�; �) : 9� 2 R; i� � �� �e�i�� = 0g; (2.1)where � and � are in the parameter space of the equation. If we are interested in a systemthat depends only on one parameter �, one usually assumes � 2 C . For instance for thedelay logistic equation we have �(�) = �� and �(�) = 0 and@D(1:4) = f� 2 C : � = �i�ei� ;�1 < � <1g: (2.2)For delay equations the boundary locus @D subdivides the parameter plane into regions.For all parameter values in one region the number of roots of the characteristic equation4



with positive real part is constant. In particular where this number is zero the parameterslie in the stability region of the equation (see Figure 1). Similarly a boundary locus canbe de�ned for the discretization (1.6).@Dm = f(�; �) : 9� 2 [��; �]; z = ei�;zm+1 � zm � h(1� #)(�zm + �)� h#(�zm+1 + �z) = 0g: (2.3)For each m; @Dm partitions the parameter space into regions so that the number of rootsof modulus greater than one of the characteristic polynomial corresponding to (1.6) isconstant in each region. The region of asymptotic stability of the problem is thereforethe region where the number is zero.Every point on the boundary locus corresponds to a parameter value at which thereis a root of the characteristic equation exactly on the imaginary axis (in the case of theDDE) or on the unit circle (in the case of the discrete scheme). For a Hopf bifurcation,we require two such roots to arise for the same parameter value, and this can be observedas a parameter value where the boundary locus curve crosses itself.In [6] we showed that for certain numerical methods the two curves approximateeach other for all equations where the linearization yields a pure delay equation. Asa consequence we were able to prove that if a Hopf bifurcation in the DDE occurs forsome parameter value �� then there exists a nearby parameter value �m where a Hopfbifurcation occurs in the numerical approximation. For strongly stable linear multistepmethods we have �m = �� +O(hp), where p is the order of the method.The approach is as follows: we assume that the original equation has a Hopf bifurcationfor a particular parameter value ��. In this case, the boundary locus for the DDE crossesitself on the x-axis at ��. We establish that the boundary locus for the numerical schemealso crosses itself at �m close to ��, that the point of intersection lies on the real axis, andthat adjacent to the value �m on the real axis is an interval of stability and an interval ofinstability for the numerical scheme.For a linear problem the boundary locus is su�cient to determine the stability be-haviour of solutions of the equation at particular parameter values. However, for non-linear problems, the boundary locus provides us with the parameter values at which thelinearised equation loses its stability. What happens to the nonlinear problem at thispoint requires analysis of the nonlinear parts of equation.Remarks:1. One could extend the analysis in a natural way to consider other classes of nonlineardelay di�erential equation2. The authors have provided a similar analysis for the application of Runge Kuttamethods to delay di�erential equations (see [8]).3 Neimark-Sacker Bifurcation AnalysisIn this section we consider how one would perform a direct bifurcation analysis of thedi�erence equation (1.6). This will enable us to determine how the nonlinearity of theproblem a�ects its behaviour at a Hopf bifurcation.For each m 2 N we can de�ne a map Fm : Rm+1 � R ! Rm+1 byY n+1 = Fm(Y n; �); (3.1)5



where Y n+1i = Y ni�1, i = 1; : : : ; m and Y n+10 is de�ned as the solution ofY n+10 = Y n0 + hf(1� #)f(Y n0 ; Y nm; �) + #f(Y n+10 ; Y nm�1; �)g: (3.2)With h = �=m we have Y ni = yn�i, where fyng is the solution of (1.6) and is thereforeequivalent to iterating (3.1). For # = 0 (Explicit Euler) the authors showed in [7] thefollowingTheorem 3.1 Assume that the di�erential equation (1.1) undergoes a supercritical (sub-critical) Hopf bifurcation at the parameter value ��, then for su�ciently small step sizesthe map (3.1) undergoes a supercritical (subcritical) Neimark-Sacker bifurcation at a pa-rameter value �h = �� +O(h).A Neimark-Sacker bifurcation or Hopf bifurcation for maps is characterized by thefollowing: given a parameter dependent map on Rn , n � 2,x 7! A(�)x+G(x; �) (3.3)withN1 G is a Ck-smooth mapping, k � 2, from Rn � R into Rn , G(0; �) = 0, Gx(0; �) = 0,� 2 R.N2 A(��) has a complex conjugate pair of eigenvalues 1;2 = e�i�0 , while all othereigenvalues have modulus strictly less than one.N3 r0(��) 6= 0, where r(�) is the modulus of the branch of eigenvalues with r(��) = 1,i.e. r(�) = j1;2(�)j.Under the above hypotheses the map (3.3) has an invariant closed curve of radiusO(p(j����j)) surrounding the origin for all � in a one-sided neighbourhood of ��. The closed curveis attracting (repelling) if zero is an asymptotically stable (unstable) �xed point of (3.3)at � = ��. Since at � = �� zero is a nonhyperbolic �xed point the nonlinear part G(�; ��)determines the attractivity of the bifurcating invariant curve (see, e.g., Kuznetsov [13]).Theorem 3.1 shows that for m large enough each map (3.1) undergoes a Neimark-Sackerbifurcation with �� = �h.Remarks.Theorem 3.1 applies only to the Euler forward method. The main di�culty in extendingthe result to more general methods lies in determining the stability of the bifurcatingclosed curves. This requires us to determine the sign of quite complicated expressionsinvolving the nonlinear part G. For the Euler forward method Fm is explicitly given butfor # 6= 0 say, Fm and therefore G is known only implicitly making the analysis even morecomplicated.We have shown (see [5]) that the approach can be extended for speci�c methods appliedto particular problems, although the calculations remain complicated. In the examples wehave calculated explicitly, the sign of the stability coe�cient is preserved for su�cientlysmall h > 0.The computational complexity of these calculations leads us to consider whether im-proved insight can be obtained through a more innovative approach.6



4 A Projection ApproachThe numerical solution of a scalar DDE yields a discrete system of the same general formas arises in the numerical solution of a system of ordinary di�erential equations. We aimto use this property and known analysis for ODEs under discretisation to derive resultsthat were di�cult to derive directly for the DDE.We start with the map (3.1) for the Euler Forward method which has the formY n+10 = Y n0 + hf(Y n0 ; Y nm; �)Y n+11 = Y n0...Y n+1m = Y nm�1 (4.1)We seek a system of ODEs for which the same system (4.1) is the Euler forwarddiscretization. One easily �nds that the systemY 00 = f(Y0; Ym)Y 01 = h�1(Y0 � Y1)...Y 0m = h�1(Ym�1 � Ym) (4.2)discretized with stepsize h yields exactly (4.1). As we have shown in [17] the system (4.2)undergoes a Hopf bifurcation of the same type as the DDE (1.1) at some parameter value�m = �� +O(h). We can now use known results on the persistence of Hopf bifurcationsin ODEs under approximations to obtain the result that (4.1) undergoes a Neimark-Sacker bifurcation at �h = �m +O(h) (see, e.g., Hairer & Lubich [9]). We therefore haverecon�rmed Theorem 3.1 using known results from ODE theory and without recourse tocomplicated calculations.It is natural to seek to generalise this result to more realistic methods, and one mightsuppose that a similar approach will yield good results. Unfortunately it turns out that,even for # methods apart from Euler forward, it is not possible to derive an exactlyequivalent system of ODEs and therefore one must consider the e�ect of a perturbationbetween the ODE method and the DDE method. We have explored various approachesand have concluded that the following is the most useful (see [7] for further details):The principal aim at this stage is to establish the sign of the stability coe�cient ofthe approximate scheme. Our existing analysis (in this section and in the previous one)has shown that the sign of the stability coe�cient (for small enough h > 0) is correctfor the Euler forward method. We write some other numerical scheme in the form ofa perturbation of the Euler forward scheme and we consider the stability coe�cient ofthe perturbed scheme. The key question is whether the perturbation in the scheme cancause the sign of the stability coe�cient to change. The paper [7] shows how the analyticalargument is constructed and allows us to conclude that for all #methods (as well as certainother numerical methods) the sign of the stability coe�cient (as h! 0) is unchanged andthe numerical approximation will display a Hopf bifurcation of corresponding type to theone found in the original DDE. 7
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