Characterising small solutions in delay differential equations through numerical approximations

Hdl Handle:
http://hdl.handle.net/10034/13244
Title:
Characterising small solutions in delay differential equations through numerical approximations
Authors:
Ford, Neville J.; Lunel, Sjoerd M. V.
Abstract:
This paper discusses how the existence of small solutions for delay differential equations can be predicted from the behaviour of the spectrum of the finite dimensional approximations.
Citation:
Manchester: Manchester Centre for Computational Mathematics, 2003
Publisher:
Manchester Centre for Computational Mathematics
Publication Date:
23-May-2003
URI:
http://hdl.handle.net/10034/13244
Type:
Technical Report
Language:
en
Series/Report no.:
Numerical analysis reports; 381
ISSN:
1360-1725
Sponsors:
Manchester Centre for Computational Mathematics
Appears in Collections:
Mathematics

Full metadata record

DC FieldValue Language
dc.contributor.authorFord, Neville J.en
dc.contributor.authorLunel, Sjoerd M. V.en
dc.date.accessioned2007-08-14T16:03:55Zen
dc.date.available2007-08-14T16:03:55Zen
dc.date.issued2003-05-23en
dc.identifier.citationManchester: Manchester Centre for Computational Mathematics, 2003en
dc.identifier.issn1360-1725en
dc.identifier.urihttp://hdl.handle.net/10034/13244en
dc.description.abstractThis paper discusses how the existence of small solutions for delay differential equations can be predicted from the behaviour of the spectrum of the finite dimensional approximations.en
dc.description.sponsorshipManchester Centre for Computational Mathematicsen
dc.format.extent-1 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherManchester Centre for Computational Mathematicsen
dc.relation.ispartofseriesNumerical analysis reportsen
dc.relation.ispartofseries381en
dc.subjectdelay equationsen
dc.subjectsmall solutionsen
dc.subjectnumerical solutionsen
dc.titleCharacterising small solutions in delay differential equations through numerical approximationsen
dc.typeTechnical Reporten
All Items in ChesterRep are protected by copyright, with all rights reserved, unless otherwise indicated.